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Abstract

We study the issue of error diversity in ensembles of neural networks. In ensembles of
regression estimators, the measurement of diversity can be formalised as the Bias-Variance-
Covariance decomposition. In ensembles of classifiers, there is no neat theory in the lit-
erature to date. Our objective is to understand how to precisely define, measure, and
create diverse errors for both cases. As a focal point we study one algorithm, Negative Cor-
relation (NC) Learning which claimed, and showed empirical evidence, to enforce useful
error diversity, creating neural network ensembles with very competitive performance on
both classification and regression problems. With the lack of a solid understanding of its
dynamics, we engage in a theoretical and empirical investigation.

In an initial empirical stage, we demonstrate the application of an evolutionary search
algorithm to locate the optimal value for λ, the configurable parameter in NC. We observe
the behaviour of the optimal parameter under different ensemble architectures and datasets;
we note a high degree of unpredictability, and embark on a more formal investigation.

During the theoretical investigations, we find that NC succeeds due to exploiting the
Ambiguity decomposition of mean squared error. We provide a grounding for NC in a
statistics context of bias, variance and covariance, including a link to a number of other
algorithms that have exploited Ambiguity. The discoveries we make regarding NC are not
limited to neural networks. The majority of observations we make are in fact properties of
the mean squared error function. We find that NC is therefore best viewed as a framework,
rather than an algorithm itself, meaning several other learning techniques could make use
of it.

We further study the configurable parameter in NC, thought to be entirely problem-
dependent, and find that one part of it can be analytically determined for any ensemble
architecture. We proceed to define an upper bound on the remaining part of the parameter,
and show considerable empirical evidence that a lower bound also exists. As the size of
the ensemble increases, the upper and lower bounds converge, indicating that the optimal
parameter can be determined exactly. We describe a number of experiments with differ-
ent datasets and ensemble architectures, including the first comparisons to other popular
ensemble methods; we find NC to be a competitive technique, worthy of further application.

Finally we conclude with observations on how this investigation has impacted our under-
standing of diversity in general, and note several possible new directions that are suggested
by this work. This includes links to evolutionary computation, Mixtures of Experts, and
regularisation techniques.
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Chapter 1

Introduction

W hen important decisions have to be made, society often places its trust in groups
of people. We have parliaments, juries, committees, and boards of directors, whom

we are happy to have make decisions for us. It is generally accepted that “two heads
are better than one”, and that bad choices can be avoided by encouraging people with
different viewpoints to reach mutually agreeable decisions. The Condorcet Jury Theorem
[156] proposed by the Marquis of Condorcet in 1784, studied the conditions under which
a democracy as a whole is more effective than any of its constituent members. In 1818,
Laplace [30] observed that a suitable combination of two probabilistic methods will perform
better than either of the components. From these first insights, a number of issues have
arisen which have been studied extensively by a number of different research groups, among
which is the Machine Learning community, the target audience for this thesis.

In this chapter, we will firstly attempt to convey the motivation for the work contained
in this thesis, including an outline of the problem to be addressed. This will be expanded
upon later in the literature review. We will then state the thesis questions clearly, including
reasons why they are important, followed by a chapter-by-chapter synopsis of the thesis
contents.

1.1 Learning Machines

The notion of a learning machine, a system that is able to teach itself to solve a given task,
is highly attractive. Even more attractive is the idea of systems that could automatically
decompose very difficult tasks into smaller, more manageable sub-tasks, which could be
solved using standard techniques. Such systems, the subject of so-called meta-machine
learning, have received a lot of well-deserved attention in the past decade.

In one particular branch of meta-machine learning, some researchers have taken the
approach of using multiple learners to solve the same problem, and combining their decisions
in some manner. The term for these groups of learners is an ensemble or committee machine.
There are many different ways to learn the machines that make up the ensemble, and many
different ways to combine the decisions of those machines. The tie that binds all the
techniques studied in this thesis is that the machines are all attempting to solve the same
problem.

The term ‘problem’ refers to a task which in fact presents itself in a number of different
guises, requiring the predictor to be able to provide decisions on several different instances

1



CHAPTER 1. INTRODUCTION 2

of the same problem; for example learning to drive a car on a road, on a dirt track, on
ice, or any other situation. Though they are all attempting to solve the same problem,
each predictor within the ensemble is likely to have different strengths and weaknesses in
different situations. A key challenge for ensemble research is how to ‘manage the recognised
limitations of the individual predictors’ [124]. The word ‘limitations’ here refers to the
situations in which the learner will not perform as well as we hope, i.e. when it will make
errors. It is important to note, in a committee of people, the ‘correct’ decision, by which
we would measure such errors, is often not known at the time of the decision-making; only
time will tell whether an error was made. In machine learning however, we very often do
have access to what is deemed the ‘correct’ choice for a small set of ‘training’ data. We
would like to build a system from this information so that we can predict the correct choice
in future situations that we have not yet encountered. This is known as supervised learning
and will be discussed in section 2.1.

Given that each learner will have these ‘limitations’—that it will make errors in some
situation or another—the hope is that the strengths and weaknesses of the ensemble mem-
bers can be recognised and managed, leading to the correct decision being taken overall.
Several empirical results [66, 115, 116, 149] have supported the widespread view that for
best performance on a task, the individuals should exhibit “diverse errors”. The intuition
here is that with a committee of people making decisions, we would not want them to all
make the same bad judgements at the same time. However in order to implement these
ideas in a computer system, they need to be far more formalised. What exactly do we
mean by “diverse” errors? The answer to this question depends critically on whether our
predictor outputs are real-valued numbers, or class labels. A real-valued number will be
output if the problem is a regression, say for example predicting 83.74kg as the weight of
a person given their height and shoe-size. A class label will be output if the problem is a
classification, for example predicting Y ES as the guess of whether the person is over 80.0kg
or not. The former situation, regression, is reasonably well understood (see section 3.1.1),
however when “diversity” is referred to it is usually intended to imply the latter, classi-
fication error diversity. Intuitively, we know that the predictors (in this case, classifiers)
should make different errors, yet formalising how they should do this has proved a difficult
challenge. Though the predictors may exhibit very different errors, they may have sacrificed
individual accuracy in order to do so; this shows that training an ensemble is a balancing
act between error diversity and individual accuracy. This issue will be addressed in more
detail in chapter 3.

We now make a distinction between two types of ensemble learning methods. Some
researchers have taken the approach of incorporating a stochastic element during construc-
tion of the ensemble, randomly perturbing a learner’s trajectory in the space of possible
predictors, so that hopefully a group of “diverse” predictors will emerge at the end. Another
approach is to deterministically enforce a measure deemed representative of error diversity.
This distinction applies to both regression and classification problems, and we will discuss
it more in section 3.2. It is this issue of how to understand and enforce error diversity (or
more precisely, how to balance diversity against accuracy) that provides the focus for this
thesis. The next obvious question is, why? What is our motivation to study such issues?
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1.2 Why study Ensembles?

Ensemble learning is an appealing research topic for many reasons. For one, ensemble
methods can be incredibly simple to implement, yet have such complex underlying dynamics
that hundreds of hours can be spent in their study. A prime example of this is the Bagging
algorithm [13] (see section 2.3.1). One of the most widely used techniques, Bagging can be
implemented in just a few lines of code, yet has seen several researchers disputing the root
of its success [20, 22, 32, 41, 110].

The wide applicability of these techniques is also an attractive prospect. The particular
technique studied in this thesis, Negative Correlation Learning [85] can be applied to any
function approximator that can minimise a quadratic error function. Many of the ensemble
methods developed over the last decade of research can and will be applied to new learning
techniques for many years to come. Working at such an abstracted level allows us to exist,
interact and contribute at the junction of several disciplines: artificial intelligence, financial
forecasting, and statistics to name but a few. As the latest machine learning fashions come
and go, so ensemble techniques continue to be applied. From the current en vogue Support
Vector Machines [142, 143], to the more established Hidden Markov Models [52], people
find ways to extract that little bit more information with an ensemble technique.

The study of why these ensemble methods succeed is of fundamental importance. If we
understand precisely why, when, and how particular ensemble methods can be applied suc-
cessfully, we will have made progress toward a powerful new tool for machine learning: the
ability to automatically exploit the strengths and weaknesses of different learning systems.
The issue of diversity is therefore a topic of great draw and depth, offering wide-ranging
implications and a fascinating community of researchers to work within. To contribute
meaningful knowledge in such an interdisciplinary subject, a focal point for study within it
must be quickly identified.

1.3 What is this Thesis about?

1.3.1 Thesis Questions

This thesis studies one specific ensemble learning technique, Negative Correlation (NC)
Learning. NC has shown several empirical successes [18, 85, 86, 94, 152], often outperforming
other ensemble learning methods on a variety of tasks, but as yet has had no explanations
offered as to why it performs well when it does. As such, the primary thesis question is
“Why and how does NC Learning succeed as an ensemble method?”. NC has a problem-
dependent parameter, λ, which determines the amount of diversity among the ensemble
members. This parameter can determine how well NC performs, yet currently there is little
information on how to set it. A secondary thesis question is therefore “How can we provide
guidance for setting λ in the NC learning algorithm?”.

These are important questions to ask, for two reasons. The first is from the viewpoint
of NC as a stand-alone tool: anything that helps us understand its behaviour or configure
its parameters, is useful. The second reason is from the viewpoint of gaining a better
understanding of ensemble classification error “diversity”. NC is a technique that was
claimed to explicitly enforce this type of diversity; in his thesis Liu [85] shows that a lower
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correlation between classification errors is observed when using NC. Understanding why
NC works should clarify, at least partially, what “diversity” means. If we can formalise
“diversity”, and then control it, we may be able to engineer better performing ensemble
systems. A third thesis question is therefore “Can we identify a good way to understand
classifier error diversity, and can we explicitly control it?”.

Our strategy for answering these questions is to engage in a study of the literature con-
cerned with “diversity”, combined with a theoretical and empirical analysis of NC learning.

1.3.2 Contributions of the Thesis

The main contribution of the thesis is a better understanding of the dynamics of NC learn-
ing. We first summarise these, then summarise how parts of this thesis have contributed
to a wider range of the community. All of these will be discussed in more detail in the
Conclusions chapter.

Contributions to the Understanding of NC Learning

• Empirical work demonstrating the use of an evolutionary algorithm to find the optimal
NC strength parameter (chapter 4).

• A formal grounding for NC, explaining why it works in a statistics context. This
also relates NC to a large body of literature, including identifying a family of tech-
niques that all utilise the same Ambiguity metric [70] during their ensemble learning
procedures (chapter 5).

• Derivation of an upper bound on the NC strength parameter (chapter 5).

• A thorough analysis of the error gradient during learning with NC. We identify four
distinct gradient components which are present in the error of a simple ensemble, an
NC learning ensemble, and a single estimator. We observe that NC learning succeeds
because it can blend smoothly between the two extremes of a fully parallel ensemble
and a single large estimator (chapter 5).

• Empirical work supporting the theoretical upper bound; also providing a characteri-
sation of how the optimal strength parameter behaves under changes to the ensemble
architecture (chapter 6).

• Empirical evidence suggesting that a lower bound exists for the strength parameter.
As the ensemble size increases, the empirical lower bound is constant, while the proven
upper bound converges down towards it. In practice, it seems with an ensemble size
about 20 or more, the optimal parameter can be determined exactly (chapter 6).

• The first empirical comparison of NC to two of the most popular ensemble learning
techniques, Boosting and Bagging (chapter 6).

Contributions in a Wider Scope

• A review of the literature on creating diversity in regression and classification ensem-
bles. This includes suggestions on a possible new taxonomy of the different methods
used to create error diversity (chapter 3).
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• An alternative, simplified proof of the Ambiguity decomposition (chapter 3).

• An explanation of the exact relationship between Ambiguity and the Bias-Variance-
Covariance decomposition (chapter 3).

• Though we could not pursue it, as it is outside the scope of the thesis, we present
detailed suggestions on which directions may prove fruitful in understanding how to
quantify classification error diversity (chapter 7).

• An observation that Negative Correlation learning [85] provides the missing link that
unites ensembles, Mixtures of Experts and the Dyn-Co algorithm [48]. Though it is
not entirely clear how the dynamics interact, we will show evidence that a smooth
space of algorithms exists between these three systems (chapter 7).

1.3.3 Structure of the Thesis

In chapter 2, we formalise the challenge of building learning systems as the Supervised
Learning Problem, and introduce one class of learning system, neural networks. In sec-
tion 2.2 we review current techniques for combining the outputs of a set of predictors. In
section 2.3 we review the most commonly used architectures for learning the predictors that
are to be combined. This chapter identifies the wider body of literature to which this thesis
contributes.

In chapter 3, we review the literature specifically relating to “diversity”. We first attempt
to explain precisely what is meant by this term in both regression and classification domains,
and identify problems with formalising the concept in the classification domain. We then
review several methods for enforcing diversity in an ensemble of predictors. In an overall
effort to understand and create “diversity”, we focus for the remainder of the thesis on one
technique, Negative Correlation (NC) Learning [85], which has claimed and shown empirical
evidence that it enforces the creation of a diverse ensemble using a regularisation term in the
error function. We describe NC, noting the lack of a solid understanding of its dynamics,
including how to set the regularisation strength parameter λ.

In chapter 4, we use an evolutionary algorithm to automatically set the λ parameter
in NC; we present empirical data for the behaviour of the optimal parameter with various
ensemble configurations and datasets. We find the optimal parameter quite unpredictable,
and suggest this may be resolved with a more formal understanding of the algorithm.

In chapter 5, we perform a theoretical analysis of NC learning. We find that due to
an assumption made in the original work, the λ parameter in fact is made up of two
components, one of which can be determined analytically for any ensemble architecture.
We give a clear account of the connections between NC, simple ensemble learning, single
network learning, the Ambiguity decomposition, and the bias-variance and bias-variance-
covariance decompositions. This gives NC a statistical interpretation, including a grounding
in a large body of literature, which it did not previously have. We prove an upper bound on
the strength parameter and show how the ensemble gradient can be understood as a sum
of various components.

In chapter 6, we present a study supporting the theoretical work developed in chapter 5.
We show empirical evidence suggesting that a lower bound exists for the strength parameter,
and several experiments showing how the optimal value changes with ensemble architecture
and noisy data, including a short comparison of NC with other popular ensemble techniques.
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In chapter 7 we conclude the thesis, summarising what we have learnt about NC learning
and how this has contributed to our understanding of diversity in general. In addition we
summarise several future studies that are suggested by these investigations.

1.3.4 Publications Resulting from the Thesis

The work resulting from these investigations has been published in a number of papers:
[17] Gavin Brown and Jeremy Wyatt
“The Use of the Ambiguity Decomposition in Neural Network Ensemble Learning Methods”,
Twentieth International Conference on Machine Learning. Washington DC, August 2003.

[16] Gavin Brown and Jeremy Wyatt
“Negative Correlation Learning and The Ambiguity Family of Ensemble Methods”, Fourth
International Workshop on Multiple Classifier Systems. Guildford, UK, June 2003

[19] Gavin Brown, Xin Yao, Jeremy Wyatt, Heiko Wersing and Bernhard Sendhoff
“Exploiting Ensemble Diversity for Automatic Feature Extraction”, 9th International Con-
ference on Neural Information Processing, Singapore, 2002.

[18] Gavin Brown and Xin Yao
“On The Effectiveness of Negative Correlation Learning”, First UK Workshop on Compu-
tational Intelligence, Edinburgh, September 2001.

[152] Xin Yao, Manfred Fischer and Gavin Brown
“Neural Network Ensembles and Their Application to Traffic Flow Prediction in Telecom-
munications Networks”, International Joint Conference on Neural Networks, Washington
DC, July 2001



Chapter 2

Combinations of Learning

Machines

I n the previous chapter, we introduced the concept of a computer system that could
learn how to perform a task by presentation of example inputs and desired outputs. In

section 2.1 we formalise the challenge of creating such systems as the Supervised Learn-
ing Problem, and introduce one class of learning system, neural networks. Several au-
thors [66, 115, 116] have noted that significant performance improvements can be obtained
by creating a group of learning systems, and combining their outputs in some fashion. In
section 2.2 we review current techniques for combining the outputs of a set of given predic-
tors. In section 2.3 we review techniques specifically for learning the predictors that are to
be combined.

2.1 Supervised Learning and Neural Networks

Imagine we are building a security system for a new hi-tech building. We would like to
build in a face-recognition system, so the building can choose whether to admit or not
admit certain personnel to a top secret area when they arrive at the door. The problem
is, a person naturally changes their appearance from day to day; how can our system make
allowances for this? Also, if we have several members of staff, how are we going to create the
system in the first place? It is not a desirable prospect to sit for many hours meticulously
describing each member of staff to the computer system. An alternative would be to provide
example pictures of the staff members, and have it learn for itself what they look like, and
how to compensate for when they change appearance slightly. We should also provide it
with at least a few examples of people who are not allowed into the secret area, so we can be
sure it will refuse admittance to non-authorised staff. This type of problem for a learning
system is known as a classification problem, the answer it provides classifies each input
into different categories. Another problem would be to predict the weight in kilograms of
the person from a photograph; this provides a real-valued output, for example 80.53kg or
67.901kg. This is a regression problem.

Our security system is only one of many possible tasks for a learning system. Others
may be for example to predict the amount of snow that will fall tonight given the current
weather conditions, or to predict the average house price in an area given some demographic
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information (in fact, exactly this, the house pricing problem, is tackled in chapter 4). We
need a general mathematical framework that will encompass all of these and enable us to
discuss them in a formal manner; we develop this in the following section.

2.1.1 Error Measures

We will first consider the formalisms required for regression problems, then toward the
end of section 2.1.2 extend the notation to deal with classification. Consider an unknown
function φ : X → Y , which maps from an input space X ⊆ Rm to an output space Y ⊆ R.
Here we assume a single dimensional output space, but all results are easily generalised to
the multi-dimensional case [10, 51]. In the problem context we have discussed so far, the
input space corresponds to the photograph of the person, the current weather conditions
and the demographic information; the output space corresponds to the weight of the person,
the amount of snow and the average house price. The overriding principle we work to is
that we only have access to a limited, random, data sample of φ’s behaviour, which we must
use to construct a system that can generalise and predict correctly on future inputs. The
data sample is the set t = {(x1, d1), (x2, d2), ..., (xN , dN )}, where each input vector xn ∈ X,
and each target variable dn = φ(xn) + ε where ε is a random scalar value, assumed to be
Gaussian distributed with zero mean. This definition for d reflects that our source for this
data sample t is not entirely representative of φ, it is noisy1. The set t is drawn randomly
according to the distribution of the random variable T , defined over all possible sets, of
(x, d) pairs, of fixed size N .

We have a parameterised function f(x;w) which we will use as a predictor—our esti-
mated model of φ. When we do not wish to refer to any specific input x or parameter vector
w, we will use simply f , or fi to refer to a specific predictor. For any input x ∈ X, the
predictor will map it to an output in Y . The accuracy of its mapping (i.e. how closely it
models φ) is determined by two factors: firstly the exact functional form of f , and secondly
by the contents of the parameter vector w ∈ Rk. We will consider the form of the function
in the next section; for the moment imagine it to be any arbitrary form, with the parameter
vector w also set arbitrarily; f(·;w) is now our predictor. For a particular (x, d) pair chosen
from t, we can quantify how well our predictor models φ with an error measure:

(f(x;w)− d)2 (2.1)

This is the squared (or quadratic) loss of our prediction from the target variable d. Is this
a fair assessment of our predictor? No, because there is a random influence at work here
that may have masked the true ability of f to model φ — in the random choice of which
input vector x that we measure the error on, and built into this is what exact amount of
random noise is present in the corresponding d. We would like to eliminate these random
influences from our error measurements. As such we would ideally like to minimise the
following integral:

e =
1

2

∫ ∫

{(f(x;w)− d)2}p(d|x)p(x).dd.dx (2.2)

1We have presumed here that the noise component exists because of a randomness in our measuring
device, though it could easily be that φ itself is inherently stochastic. In this latter case we would have
d = φ(x) = h(x) + ε, where h(x) is the deterministic (predictable) part, and ε is the non-deterministic
(unpredictable) part. In either case, they are mathematically equivalent and we would like to recover the
deterministic part, in spite of the noise.
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The 1
2 is a result of assuming the noise component is Gaussian distributed (see [10, p196]

for details). This is the weighted average squared error for every possible x weighted by
its probability of occurrence, taking into account every possible noise value d weighted by
its probability of occurrence given the x value. We now define the following conditional
averages of the target variable:

〈d|x〉 =

∫

dp(d|x).dd (2.3)

〈d2|x〉 =

∫

d2p(d|x).dd (2.4)

As a shorthand notation when we do not wish to refer to any specific x we use 〈d〉.
Equation 2.2 can be now simplified (see [10, p202] for details) to give us the following:

e =
1

2

∫

{(f(x;w)− 〈d|x〉)2 + (〈d2|x〉 − 〈d|x〉2)}p(x)dx

=
1

2

∫

{(f(x;w)− 〈d|x〉)2 + σ2
ε }p(x)dx

(2.5)

where σ2
ε is the variance of the noise component. Since this variance is independent of

our parameter vector w, it is out of our control and therefore is regarded as irreducible.
Since the noise is assumed to have zero mean, equation (2.5) is minimised when:

f(x;w) = 〈d|x〉 = φ(x) (2.6)

for all x. The infinite integral in (2.5) can be approximated with a summation over our
finite dataset t, where we have presumed that each input is equally likely. The error of
predictor f(·;w), on dataset t is defined as:

e(f(·;w); t) =
1

N

N∑

n=1

1

2
(f(xn;w)− dn)2 (2.7)

This quantity is known as the mean squared error over the set t. With larger N we should
be able to get a better approximation to the integral.

We have now established a relatively fair way to assess the abilities of our predictor,
eliminating random influences. So far we have assumed that our parameter vector w has
been set arbitrarily, enabling us to issue predictions for any given x, though as we mentioned,
how closely the predictor models φ depends significantly on this parameter vector. In the
following section we will consider the problem of how to determine the optimal parameter
vector that minimises error.

2.1.2 The Supervised Learning Problem

Defining the Problem

The Supervised Learning Problem is, given a finite training set, t, to update w so as to
minimise equation (2.5). It can be seen that this is the challenge of reconstructing the map
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φ from the set t, in spite of the fact that it is a limited, noisy sample of φ’s behaviour.
We have w′ ← L(f, t,w), which indicates that our learning algorithm L has updated the
parameter vector w. For the class of predictors we will be considering, it is common for an
input to the learning algorithm to be a random initialisation of the parameter vector, drawn
according to the distribution of the random variable W , which for this thesis we define as
uniform over [−0.5, 0.5]k.

The “trained” function f(·;w) is dependent on two random variables, T and W . Once
trained, for any input from the space X, the function will now map2 it to a point in the
output space Y ; if it received a different training set or parameter initialization, it may have
performed a different mapping. As previously mentioned, when calculating any measure
based on our predictor, we would like to eliminate these random influences. For a particular
input vector x, the expected value of the predictor f is defined as:

ETW {f(x; ·)} =

∫ ∫

{f(x;w′)|w′ ← L(f, t,w)}p(t)p(w).dt.dw (2.8)

This is the weighted average output of the predictor f on the input x, where each output
is determined after training f with a particular training set t and parameter initalization
w, and weighted according to the probability of that training set and that parameter ini-
tialization. The two independent random variables T and W form a joint random variable
TW . Wherever the expectation operator E{·} is used in this thesis, unless explicitly stated,
it can be assumed the expectation is calculated with respect to the distribution of TW .

Similarily to (2.8) we define the expected error (or generalization error) of the predictor
on a single input pair (x, d) as:

ETW {(f(x; ·)− d)2} =

∫ ∫

{(f(x;w′)− d)2|w′ ← L(f, t,w)}p(t)p(w).dt.dw (2.9)

It can be seen that what we are really doing is evaluating the ability of our learning
algorithm L to update the parameter vector toward the optimal vector, given all possible
training sets and random parameter initializations. Just as we approximated (2.5) with
(2.7), we can approximate the expected error at a single testing point x with an average
over several training sets and several random parameter initializations:

e(f(·; ·)) =
1

ttrials

∑

t

1

wtrials

∑

w

[

(ft(x;w′)− d)2|w′ ← L(f, t,w)
]

(2.10)

where the number of training sets is ttrials and the number of parameter initializations
is wtrials. This can of course then be averaged over several testing points (x, d), as in
equation (2.7). By designing our learning algorithm such that it can minimise this quantity,
we hope to be able to minimise error on future unseen data. Part of the Supervised Learning
problem is to update the parameters so the predictor can generalise to new data—to use
t in such a way as to achieve low error on an unseen testing set t′. Practically, a testing
set could be obtained by splitting the original set t into two parts, t and t′. If we perform

2The mapping it performs is a hypothesis: a guess at what the true map φ might be. The set of all
possible hypotheses is called the hypothesis space. The set of all possible configurations of the parameter
vector w is the parameter space. It should be noted that more than one point in parameter space can map
to a single point in hypothesis space.
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well on t but not on t′ we are said to have overfitted the function—we have fine-tuned our
predictor so much that now it only works on the training set t, and is consequently not a
good representation of φ. This issue will be further discussed in section 2.1.3.

Classification Problems

We mentioned that our output space is continuous, Y ⊆ R, this means the reconstruction
of the map φ is a regression problem. If the output space Y is discrete, Y = {c1, c2, c3, ...},
where each ci is a possible ‘class’ to which each element of X can be mapped, we have a
classification problem. Classification problems are assessed by a 0-1 (zero-one) loss function;
as such, analagously to (2.7), we have:

e(f(·;w); t) =
1

N

N∑

n=1

L(f(xn;w), dn) (2.11)

where L(a, b) is 1 if a 6= b and 0 otherwise. This error measure is referred to as the
classification error rate; it can also be thought of as the percentage of misclassified examples.

Stable and Unstable Predictors

We have discussed how error measures play a role in the Supervised Learning problem and
assessing the predictors we work with. We now make a distinction between two classes of
predictors, unstable and stable. An unstable predictor is one that has a strong dependency
on its training data, therefore the hypothesis it forms during learning depends to a large
degree on what data it received. Examples of unstable predictors are decision trees [34]
and neural networks (see section 2.1.4). A stable predictor is one that has no such strong
dependency on the training data; examples of stable predictors are k -nearest neighbour
classifiers and the Fischer linear discriminant [34]. Unstable classifiers exhibit what is known
as high variance, while stable classifiers exhibit low variance (see [13] for more information).
It is this property that brings us to choose unstable classifiers as the focus of the thesis.
Variance is one half of the well known bias-variance decomposition of an error function,
which we will now discuss.

2.1.3 Bias and Variance

The most important theoretical tool in machine learning research is the bias-variance de-
composition [45]. The original decomposition by Geman et al [45] applies to quadratic
loss error functions, and states that the generalisation error can be broken into separate
components each with their own interpretation. However as mentioned in section 2.1.1,
different tasks may require different error measures, not necessarily using quadratic loss.
Several authors have proposed decompositions for 0-1 loss [14, 42, 68, 67], each with their
own shortcomings and assumptions. Most recently Domingos [33] and James [58] provide
equivalent, unified definitions for any symmetric3 loss function. This thesis is only con-
cerned with the quadratic loss decomposition, though in section 3.1.2 and the Conclusions
chapter we do discuss certain possible extensions using the 0-1 loss function.

3A symmetric loss function L is one such that L(a, b) = L(b, a)
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The bias-variance decomposition for quadratic loss states that the generalisation error of
an estimator can be broken down into two components: bias and variance. These two usually
work in opposition to each other: attempts to reduce the bias component will cause an
increase in variance, and vice versa. Techniques in the machine learning literature are often
evaluated on how well they can optimize the trade-off between these two components [142,
144]. The bias can be characterised as a measure of how close, on average over several
different training sets, your estimator is to its target. The variance is a measure of how
‘stable’ the solution is: given slightly different training data, an estimator with high variance
will tend to produce wildly varying performance. Training an estimator for a long time tends
to decrease bias, but slowly increase variance; at some point there will be an optimal trade-
off that minimises the generalisation error. This is the bias-variance dilemma; a typical
training session is shown in figure 2.1.

Generalisation error

Bias

Variance

Training time

Error

Figure 2.1: Illustration of the trade-off between bias and variance as a function of training
time.

To understand these concepts further, consider our unknown function φ, a sample train-
ing set t, and two estimators, C and S. The C estimator is so named because it is complicated
— it has a large number of configurable parameters w. The S estimator is so named because
it is simple, it has relatively few parameters w. Assume now that t is outside the repre-
sentable function space of S, but within the corresponding space of C. We know that C will
be able to fit the function, but also that it will probably overfit to the training dataset t,
and not be a good estimate of the true function φ. For a different random sample of training
data, the complex estimator may again overfit, so producing a different hypothesis for each
different set of training data presented. This is high variance, with regard to the training
sets, but because it fits each one so well, it is said to have low bias. The simple estimator S

will not be able to fit the data t, so will have high bias. However, it will respond in almost
the same way (low variance) for different instances of t, since its representable function
space is so small. Formally, the bias-variance decomposition can be proved as follows:

ET {(f − d)2} = ET {(f − ET {f}+ ET {f} − d)2}
= ET {[(f − ET {f}) + (ET {f} − d)]2}
= ET {(f − ET {f})2 + (ET {f} − d)2 + 2(f − ET {f})(ET {f} − d)}

ET {(f − d)2} = ET {(f − ET {f})2}+ (ET {f} − d)2

MSE(f) = var(f) + bias(f)2 (2.12)
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where d is the target value of an arbitrary testing datapoint; the decomposition is
therefore a property of the generalisation error. It should be noted that for brevity of
notation, and without loss of generality, we have presumed a noise level of zero in the
testing data4. The expectation operator in the decomposition, ET { · }, is with respect to
all possible training sets of fixed size N , and all possible parameter initialisations. We
define this formally as a random sequence T , which is of length N , where each element
is an independent observation from an unknown joint distribution p(x, d). For brevity of
notation, we leave the averaging over possible parameter initialisations implicit.

This decomposition is a very widely cited result; a lesser-known result [141] extends this
to take account of the possibility that the estimator could be an ensemble of estimators.
This extension will be discussed in the next chapter. For now, we will consider the exact
type of learning machine that we will be using throughout this thesis: neural networks.

2.1.4 Neural Networks

While we could study combinations of any type of learning machine, the focus of this thesis is
on combinations of multi-layer perceptrons (MLP), which is a type of neural network [10, 51].
An MLP is a directed graph, arranged in layers. Each node in the graph performs a
particular function on numeric values that it receives as input from the nodes that connect
into it from the previous layer. The node calculates this function, then passes the outcome
to each node in the next layer.

input output

Figure 2.2: A Multi-Layer Perceptron

The layers are termed ‘input’, ‘hidden’ and ‘output’ layers. A layer is ‘hidden’ if it has
no direct connection to the input or output of the network, so the network above has one
hidden layer containing three hidden nodes. The pattern of connections between nodes can
vary; in this thesis we only consider fully-connected feedforward networks, as in figure 2.2.
Each node passes its output forward to other nodes that it is connected to; information flow
occurs from left to right in the diagram shown. The nodes in the hidden and output layers
calculate their activation, which is a weighted summation of the inputs they receive, then
pass this through an activation function. The activation of node j in a particular layer is:

aj =
∑

i

wijoi (2.13)

where oi is the output of node i in the previous layer, and wij is the weighting on the
connection from node i to the current node j. The output oj is produced by the activation

4In the case of a non-zero noise component, d in the decomposition would be replaced by its expected
value 〈d〉, and a constant (irreducible) term σ2

ε would be added, representing the variance of the noise.
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function:

oj =
1

1 + exp(−aj)
(2.14)

This is the logistic function, and is used throughout the thesis. The connection pattern
and activation functions together define the network architecture. In the notation we have
established, f is the function implemented by the network architecture, and w is a vector
containing all the weights on connections between the nodes. The weights are real-valued
numbers and usually initialised randomly in a small range, for example [−1, 1]. For given
input and output vectors, there exists a set of weight values which will minimise the mean
squared error function5. The values of the weights can be discovered by several methods [10,
51]. The most popular method is gradient descent, which we will now discuss.

Gradient Descent and the Backpropagation Algorithm

A common algorithm for updating the weights is backpropagation, which is used throughout
this thesis. Backpropagation [92] is a gradient descent technique, meaning weight changes
are made in proportion to the gradient of the error function. The error of a network output
f , on a single input pattern, is:

enet =
1

2
(f − d)2 (2.15)

Updates to a weight wij within the network that produces output f are accomplished by:

wnew
ij = wold

ij + ∆wij
(2.16)

∆wij
= −α

∂enet

∂wij

where α is a step size or learning rate. The updates are performed iteratively, making
small updates to each weight in the network until a minimum is reached in the error func-
tion. This is plain (or vanilla) backpropagation. Several modifications can be made to the
algorithm to improve performance, such as adding a momentum term, which can aid in
escape from local minima, or weight decay to improve generalisation [51]. In this work we
only concern ourselves with plain backpropagation.

5In fact many other error functions could be used but MSE is popular in the neural networks literature
as it has several nice properties, including the bias-variance decomposition as we have shown.
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2.2 Methods for Combining a Set of Predictors

The combination strategy for a group of predictors is of fundamental importance, and can
decide the performance of the whole system. Sharkey [124] states that it can be thought of
as “managing the recognized limitations of the component estimators”. In this section we
review two types of combination strategy: linear and non-linear.

2.2.1 Linear Combinations

The simplest possible combination strategy is to take a linearly weighted summation of the
individual predictor outputs. The output of the combination is:

fens =
M∑

i=1

wifi (2.17)

where M is the number of predictors, fi is the output of the ith predictor, and wi is the
corresponding non-negative real-valued combination weight. This is also commonly referred
to as the sum fusion strategy. Specialisations of the linear combination are the convex
combination, where weights can be non-uniform but have the constraint that they sum to
one:

∑M
i=1 wi = 1.0; and also the uniform combination in eq.(2.18), where all weights are

equal at wi = 1
M .

f̄ =
1

M

M∑

i=1

fi (2.18)

A set of predictors combined by a uniform weighting is referred to as the Simple ensemble.
But which of these strategies should we use—uniform weighting or non-uniform weighting?

Regression Problems

The first6 major study on combining regression estimators was by Perrone [109]. Given a
target pattern (x, d), define the misfit of a predictor fi(x) as mi(x) = d− fi(x). Define
the correlation matrix C with elements indexed as Cij = E{mi(x)mj(x)}. Perrone [109],
and independently Hashem [50], showed equivalent solutions on how to determine optimal
weights. It can be shown that the optimal weights are:

wi =

∑M
j=1 (C−1)ij

∑M
k=1

∑M
j=1 (C−1)kj

(2.19)

In order to calculate this, we have to estimate the correlation matrix C. This matrix,
and therefore the optimal weights, cannot computed analytically but can be approximated
with a validation dataset [50],[10, p368], as follows:

Cij ≈
1

N

N∑

n=1

[

(dn − fi(xn))(dn − fj(xn))
]

(2.20)

We calculate this value on a dataset of size N , in (2.20), determine optimal weights
with (2.19), then calculate the ensemble output with (2.17).

6This was the first study in the machine learning literature, but the topic has been covered in other
research communities for several years, e.g. in financial forecasting, Clemen [23], and Bates and Granger [6].
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Classification Problems

Tumer and Ghosh [140] (see [138] or [139] for fuller explanations) provided a theoretical
framework for analysing the simple averaging combination rule when our predictor outputs
are estimates of the posterior probabilities of each class. First, we note that the total error
of a predictor is equal to the Bayes error plus some ‘added’ amount of error [138]:

Etot = Eadd + Ebay (2.21)

Now, given a one-dimensional feature vector x, the ith individual predictor approximates
the posterior probability of class a as:

P̂i(a|x) = P (a|x) + ηi(a|x) (2.22)

P (a|x) is the true posterior probability of class a and ηi(a|x) is the estimation error. Let
us assume the estimation errors on different classes a and b are independent and identically
distributed random variables [139, p5] with zero mean and variance σ2

ηi
. Now the expected

added error of the ith predictor in distinguishing between the two classes a and b is

Eadd,i =
2σ2

ηi

P ′(a|x)− P ′(b|x)
(2.23)

where P ′(a|x) is the derivative of the true posterior probability of class a. This framework
and its consequences will be discussed more in chapter 3. It is interesting here because
Roli and Fumera [43, 114] recently extended it to allow non-uniform weighting. They show
that in the case of the classifiers having uncorrelated estimation errors ηi and ηj , then the
optimal weights for the convex combination are:

wi =
1

Eadd,i

[ M∑

j=1

1

Eadd,j

]−1
(2.24)

For classifiers with correlated estimation errors (the most likely situation) they suggest that
it is a very difficult problem to compute optimal weights analytically, and to date no solution
has been shown in the literature.

Classification problems can be viewed as a special case of regression problems, where the
targets are always discrete values—for a two-class problem, targets are 1 and 0. Jimenez [60]
used this principle in his “Dynamically Averaged Networks” (DAN), and compared approx-
imating optimal weights by cross-validation [10, 50, 108] as we have described using equa-
tion (2.20), against his own method using the ‘certainty’ of an estimator in its answer. This
used a neural network as the predictor; a single sigmoidal output unit was thresholded at
0.5 to distinguish between class 0 and class 1. The certainty of a network fi on an input x

was:

cert(fi(x)) =

{
fi(x) if fi(x) > 1

2 ;
1− fi(x) otherwise.

(2.25)

and the convex combination weights were given by:

wi =
cert(fi(x))

∑M
j=1 cert(fj(x))

(2.26)
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This DAN method was tested on four real world datasets, and found to outperform or
equal the performance of using either uniform weights or optimal weights estimated by the
validation set procedure.

Generally, we would expect to weight the classifiers inversely proportional to how well
we expect them to perform; a very good classifier gets a high weight, while a not so good
classifier gets a small weight. With this in mind, some authors have developed their own
heuristics for weighting the ensemble members. For binary classification problems, Freund
et al [39] weight predictors exponentially with respect to their training error. Tresp and
Taniguchi [135] investigate non-constant weighting functions, where the weightings are de-
termined anew for each testing pattern, by calculating a probability for how likely a given
estimator is to have seen data in a region of the input space close to a new input pattern.

2.2.2 Non-Linear Combinations

When we have a classification problem, and our learner outputs a discrete class label rather
than a real-valued number, a widely used combination rule is a majority vote among the
labels predicted by each member of the ensemble [7, 115]. Kittler and Alkoot [65] theoret-
ically analysed the relationship between the sum and vote fusion strategies. They found
that when the errors in our estimate of the posterior probability of a class have a normal
distribution, sum always outperforms vote, whereas for heavy tail distributions, vote may
outperform sum; this was confirmed with empirical data. Kuncheva et al [72] derive theo-
retical upper bounds on the maximum achievable accuracy when using a majority voting
combination.

Bahler and Navarro [5] conduct a large empirical study into using different combination
rules. They found that when accuracy is approximately balanced across the estimators,
majority voting performs as well as any more complex combination rule. When accuracy
is imbalanced, majority vote tends to decrease in reliability, while more complex meth-
ods which take account of the individual performances, like Dempster-Schafer theory of
evidence [91] and Bayesian methods [2], retain their performance.

Tumer and Ghosh [136] introduce order statistics as combination rules for classification
tasks. For this we take M estimators, ordered such that the outputs for a particular class
have the property {f1 ≤ f2... ≤ fM}. The min, max and median rules are:

fmin(x) = f1(x) (2.27)

fmax(x) = fM (x) (2.28)

fmed(x) =

{

fM
2

(x) if M is even

fM+1

2

(x) if M is odd
(2.29)

For example, consider the situation if we had an ensemble of four neural networks on
a two-class problem. Each has a single sigmoidal output unit, if the output is above 0.5,
we say it is class A, and class B otherwise. For a new pattern the networks give outputs
0.2, 0.6, 0.7 and 0.99. The min rule would predict class B, whereas the max and med rules
would predict class A. Roli and Fumera [114] presents empirical evidence supporting the
arguments by Tumer and Ghosh [137] stating that order statistics are most beneficial as
combination rules when the classifiers are highly imbalanced in accuracy.

An alternative to the static combination methods discussed so far is to choose a single
predictor from the ensemble, dependent on what input pattern is received. The DCS-LA
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(Dynamic Classifier Selection with Local Accuracy) algorithm by Woods et al [150] uses
estimates of local accuracy in the input space to select a single classifier to respond to a
new pattern; their experiments plus extensive testing by Kuncheva [71] establish DCS-LA as
a very robust technique for combining estimators that have different individual accuracies.

A novel approach was adopted by Langdon [81, 82, 83] using a Genetic Programming [69]
system, to find a highly non-linear method of combining the outputs of the ensemble. This
combination rule was applied to a medical dataset and Receiver-Operator Characteristics
(ROC) [158] were calculated. The system was found to improve performance in ROC
space beyond a previously suggested theoretical upper bound [122]. A similarly inspired
evolutionary approach was taken by Zhou et al [159], using a Genetic Algorithm to select a
good set of networks to include in the ensemble.

Other techniques that are commonly used include Bayesian formulations [134, 24],
Dempster-Schafer Theory of Evidence [91], and the Behaviour Knowledge Space method [112].
Suen and Lam [131] provide an excellent review of a number of different rules. Several au-
thors have compared the effectiveness of these and other combination rules in different
situations; for example, Duin and Tax [35], Bauer and Kohavi [8], and Ali [2]. A point of
agreement seems to be that no one combination rule is overall better than another, and
that no rule at all can be a substitute for a well-trained set of predictors in the first place.
So how do you learn a good set of predictors?

2.3 Architectures for Learning a Set of Predictors

In this section we review the two main architectures for learning a set of predictors, ensem-
bles and Mixtures of Experts. These two are very often seen as opposites, one “modular”
and one “non-modular”. The supposed boundary here can easily be blurred as we illustrate
a third technique which is claimed to blend smoothly between the two; we discuss this claim
and the relationship between all three systems.

2.3.1 Ensembles

The characteristic feature of an ensemble is redundancy ; each predictor could perform the
task on its own, but better generalization performance is obtained from the combination.
The idea of an ensemble of neural networks can be traced back to Nilsson [99] who arranged
a group of perceptrons in a layer, and combined their outputs with a second, vote-taking,
layer. In this section we will review Bagging and Boosting, two of the most widely used
techniques for creating an ensemble.

In Bagging [13] (short for Bootstrap Aggregation Learning) we randomly generate a
new training set, based on the original set, for each ensemble member. Given a training set
of size N , from this we uniformly at random sample N items with replacement, then train a
new ensemble member with this resample. We repeat this for any new ensemble members
we wish to create. The resampled sets are often termed bootstrap replicates [36]; Breiman
showed that on average 63.2% of the original training set will present in each replicate.
Figure 2.3 shows the algorithm.

Bagging has proved to be a popular technique, applicable to many problems, but the
explanation for its success remains controversial. Friedman [42] suggests that Bagging
succeeds by reducing the variance component of the error and leaving the bias unchanged;
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1. Let M be the final number of predictors required.

2. Take a training set t = {(x1, d1), ..., (xN , dN )}.

3. For i = 1 to M do :

• Make a new training set tbag by sampling N items uniformly at random with
replacement from t.

• Train an estimator fi with this set tbag and add it to the ensemble.

For any new testing pattern x, the Bagged ensemble output is given by:

fbag(x) =
1

M

∑

i

fi(x)

Figure 2.3: The Bagging Algorithm

while [46] shows evidence that Bagging can in fact converge without reducing variance.
Domingos [32] gives a Bayesian account, and investigates two hypotheses: Bagging succeeds
because (1) it is an approximation to Bayesian Model Averaging [26], and (2) it shifts the
prior distribution of the combined estimator to a more appropriate region of the model space;
the empirical results on 26 real and artificial datasets all support the second hypothesis and
contradict the first.

Bagging resamples the dataset randomly with a uniform probability distribution; an
alternative would be to have a non-uniform distribution, as we have in Boosting [119]. Since
the initial work by Schapire [119], a large family of Boosting algorithms have developed,
including cost-sensitive versions [37, 63] and those which can provide confidence estimates
in their predictions [121]. AdaBoost [40] is probably the most widely investigated variant.
The algorithm proceeds in rounds, with a new network being trained at each round. A
network is trained initially with equal emphasis on all training patterns. At the end of each
round, mis-classified patterns are identified and have their emphasis increased in a new
training set which is then fed back into the start of the next round, and a new network is
trained. After the desired number of networks have been trained, they are combined by a
weighted vote, based on their training error. Figure 2.4 shows the algorithm; the version
shown is one of several ways AdaBoost ing could be conducted. Kuncheva [78, 77] provides
in-depth studies of how subtle changes to the probability distribution updates can lead to
very different behaviours.
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1. Let M be the final number of predictors required.

2. Take a training set t = {(x1, d1), ..., (xn, dN )}, where ∀n, dn ∈ {−1, +1}. De-
fine a distribution Di, initially uniform over elements of t, so ∀n, Di(n) = 1

N

3. For i = 1 to M do :

• Make a new training set tboost by sampling N items at random with replace-
ment from t, according to the distribution Di.

• Train an estimator fi with this set tboost and add it to the ensemble.

• Calculate ηi =
∑

(xn,dn)∈t I(fi(xn), dn), where I(·, ·) returns Di(n) if the
pattern is classified incorrectly and 0 otherwise.

• Set αi = 1
2 ln
(

ηi

1−ηi

)

• For each pattern (xn, dn) ∈ t, update Di+1(n) = Di(n)exp(−αidnfi(xn))
Zi

where
Zi is a normalization factor to ensure Di+1(n) is a distribution.

For any new testing pattern x, the Boosted ensemble output is given by:

fboost(x) = sign(
M∑

i=1

αifi(x))

Figure 2.4: The AdaBoost Algorithm
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The combination in AdaBoost is a linear (not necessarily convex) combination of the
network outputs, with weights α based on the training error but are fixed with respect to the
input patterns. The obvious extension to this is to allow the weights to vary according to
the input pattern, so the α values are re-calculated by some method for every new x value.
Several authors, including Schapire and Singer [118], Meir et al [96] and Moerland [98], do
precisely this with versions of “localized” boosting. Their architectures bear a number of
similarities to the Mixture of Experts, which will be covered in the next section. Although
we have so far discussed Boosting in the context of classification problems, Avnimelech
and Intrator [3] showed an extension of AdaBoost to boosting with regression estimators.
Schapire [120] conducts a review of recent theoretical analysis on AdaBoost, describing links
to game theory, and extensions to handle multi-class problems.

Maclin and Opitz [90] and also Bauer [8] compare Bagging and Boosting methods in a
large empirical study. Their findings show that although Bagging almost always produces an
ensemble which is better than any of its component classifiers, and is relatively impervious
to noise, it is on average not significantly better than a simple ensemble. They find Boosting
to be a powerful technique, usually beating Bagging, but is susceptible to noise in the data
and can quickly overfit; similar problems with overfitting in AdaBoost have been observed
by a number of authors. Most recently, Jin et al [61] use a confidence-based regularisation
term when combining the Boosted learners; if learners early on in the Boosting chain are
confident in their predictions, then the contribution of learners later on in the chain is
down-played; this technique shows significantly improved tolerance to noisy datasets.

2.3.2 Mixtures of Experts

The Mixtures of Experts architecture is a widely investigated paradigm for creating a com-
bination of estimators [54, 55]. The principle underlying the architecture is that certain
estimators will be able to ‘specialise’ to particular parts of the input space. A Gating net-
work receives the same inputs as the component estimators, but its outputs are used as
the combination weights. The Gating network is responsible for learning the appropriate
weighted combination of the specialised estimators (experts) for any given input. In this
way the input space is ‘carved-up’ between the experts, increasing and decreasing their
weights for particular patterns. Figure 2.5 illustrates the basic architecture.

For M experts, the gating network consists of a single layer of M neurons, which each
neuron assigned to a specific expert. The activation of the ith neuron on a single pattern x

is:
ci =

∑

j

xjwij (2.30)

where the sum is over all of the input features xj ∈ x, and wij is the weight on the
connection from input feature j to this neuron i. The output of the gating network is
normalised so that the gates on the experts sum to one. The softmax activation function
is used, thus the output of the ith gate is:

gi =
exp(ci)

∑M
j=1 exp(cj)

(2.31)
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Expert 1

Expert 2

Expert 3

input
output

Gating net

Figure 2.5: The Mixtures of Experts architecture

The output of the whole system is:

fmix =
M∑

j=1

gjfj (2.32)

For a single pattern (x, d), the error function to be minimised for the system is:

emix =
1

2
(fmix − d)2 (2.33)

If using gradient descent to train the system, the weight updates for the experts will be
calculated using the partial derivative:

∂emix

∂fi
= gi(

M∑

j=1

gjfj − d) (2.34)

and the updates to the gating network weights with:

∂emix

∂gi
= fi(

M∑

j=1

gjfj − d) (2.35)

A huge number of variants of this paradigm have developed since the original concept
paper [54]. In a paper published later in the same year [57] the ideas were extended and
formalised. In [62] the ideas were given a theoretical grounding in associative Gaussian
mixture models, and the Expectation-Maximisation (EM) algorithm was shown to be useful
for learning the weights of the networks.
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2.3.3 Dyn-Co : Blending between Mixtures and Ensembles?

Hansen’s Dyn-Co algorithm [48] uses the same overall architecture as the original Mixtures
of Experts method [54], but using a different error function. The error for the ith expert is:

edynco,i =
1

2
(

M∑

j=1

gjfj − d)2 + γ
1

2
(gi −

1

M
)2 (2.36)

The update for the experts remains the same, using a partial derivative identical to
equation 2.34, but the update for the gating network now contains an regularisation element
which constrains the values of the gates. The update to the gating network weights uses
the partial derivative:

∂edynco,i

∂gi
= fi(

M∑

j=1

gjfj − d) + γgi(gi −
M∑

j=1

g2
i ) (2.37)

When the scaling parameter γ is zero, Dyn-Co is equivalent to a standard Mixtures of
Experts model. When γ approaches infinity, the outputs of the gating net are forced to
be equal, at 1

M . Hansen’s claim [48, p86] was that when γ = 0 we have a ‘pure’ Mixtures
method, and when γ →∞, Dyn-Co is a ‘pure’ ensemble method.

If all the gates gi = 1
M , then the error gradient for the experts becomes:

∂edynco,i

∂fi
=

1

M
(f̄ − d) (2.38)

However, the conventional definition for an ensemble training method is to train en-
semble members independently of one another. The error function for a single network fi

is:

enet =
1

2
(fi − d)2 (2.39)

and the error gradient:
∂enet

∂fi
= (fi − d) (2.40)

As γ → ∞, the error gradient approaches equation 2.38. Since equation 2.40 is not
equal to equation 2.38, we can see that for Dyn-Co with large γ, the training procedure is
not exactly equivalent to the more widely accepted definition of an ensemble.

2.3.4 Ensembles, Mixtures, and Dyn-Co

In introductory texts that mention combinations of predictors, it is common to draw a bold
distinction between “modular” and “ensemble” systems [51]. This can be regarded as very
misleading, many authors have also commented on the similarities between the two [38, 124],
and as we have seen Dyn-Co seems to provide a link of sorts. In the Conclusions chapter, we
will demonstrate that the technique we study as the focus of this thesis, Negative Correlation
learning [85] provides the missing link that unites these. Though it is not entirely clear how
the dynamics interact, we will show evidence that a smooth space of algorithms exists
between these three paradigms.



CHAPTER 2. COMBINATIONS OF LEARNING MACHINES 24

2.4 Chapter Summary

We have now reviewed the main issues encountered when combining predictors in groups.
We first introduced the Supervised Learning problem and described the multilayer percep-
tron, the predictor to be used in this thesis. We then reviewed some of the methods for
combining a given set of predictors, followed by a summary of architectures for learning the
predictors that are to be combined. Among these architectures is the paradigm of ensemble
learning, where each predictor attempts to solve the same problem and errors can poten-
tially be reduced by averaging their predictions. Many of these techniques will be described
in more detail in a taxonomy we propose in the next chapter.

We introduced an important theoretical result for supervised learning, the bias-variance
decomposition of the generalisation error. This decomposition is extended in the following
chapter, we show how it becomes an extremely useful result for the ensemble learning
literature, and is fundamental to some of the later results in this thesis.

This chapter has served to identify the wider body of literature to which the thesis
contributes. In the following chapter we will focus the discussion a little more and review
the concept of ensemble error “diversity”.



Chapter 3

Defining Diversity

I n chapter 1 we introduced the idea that an ensemble of predictors can be improved if
the ensemble members exhibit ‘diverse’ errors. In this chapter we further analyse the

concept of error “diversity”. We review existing explanations of why ensembles with diverse
errors perform well, for both regression and classification contexts. In the process of this we
clarify a subtle point, often overlooked, to do with quantifying classifier ensemble diversity
and the inherent non-ordinality of the predictor outputs. We proceed with a review of the
literature on attempts to create diversity in both forms, commenting on the structure of
the field and proposing a novel way to categorise different diversity creation techniques.

3.1 Why do Ensembles perform better than Single Networks?

3.1.1 In a Regression Context

First, as an illustrative scenario, consider a single neural network approximating a sine
wave; our network has been supplied with a limited set of datapoints to train on, the inputs
chosen randomly at uniform from [−π, π], and a small amount of Gaussian noise added to
the outputs. Now, consider a single testing datapoint, to find the value of sin(2). The true
answer is ∼ 0.909, yet we know our network may possibly overpredict or underpredict that
value. The way in which it makes errors will follow a distribution dependent on the random
training data sample it received, and also on the random initialisation of the weights. The
mean of this distribution is the expectation value ETW {f}, and f is a network trained with
a particular dataset and a particular weight initialisation. Figure 3.1 illustrates a typical
error distribution, with the target value d shown. The four crosses marked are estimates
of sin(2) from a hypothetical network; the estimates differ only in that the network was
started from different initial weights each time.

From this viewpoint we can immediately see the parallels to an ensemble system. Each
member of an ensemble is a realisation of the random variable defined by this distribution
over all possible training datasets and weight initialisations. The ensemble output is the
average of this set of realisations; all our diversity promoting mechanisms are there to
encourage our sample mean f̄ to be a closer approximation to ETW {f}. If we have a
large ensemble, we have a large sample from this space; consequently with a large sample
we can expect that we have a good approximation to the mean, ETW {f}. If we have a
smaller ensemble, we cannot expect this: our sample mean may be upward or downward

25



CHAPTER 3. DEFINING DIVERSITY 26

d=0.909

1.00.8

Figure 3.1: Typical error distribution of an unbiased estimator approximating sin(2)

biased. In order to correct this, some methods, such as Bagging (see section 2.3.1), construct
our networks from different training datasets, allowing us to sample a more representative
portion of the space. This illustration assumes that the expected value of our estimator is
equal to the true target value, i.e. an unbiased estimator. If this is not the case, we may
have the situation in figure 3.2.

d=0.909

1.00.8

E{f}

Figure 3.2: Typical error distribution of a biased estimator approximating sin(2)

Here, our estimator is upward biased, i.e. E{f} 6= d, its expected value E{f} is high of
the target d. In this case, even if we sample many times from this distribution, we will not
be able to estimate the target accurately with a simple average combination as the simple
average will converge to E{f} as we add more networks. We would need to non-uniformly
weight the outputs, giving higher weights to the networks predicting lower values. This
is of course a purely hypothetical scenario, we could not look this closely at every single
datapoint to manually set the weights for the combination, but it does serve to illustrate
that the chance of an error could be reduced by using a combination of several predictors
rather than one. This intuition can be more formalised as the Ambiguity Decomposition.

The Ambiguity Decomposition

Krogh and Vedelsby [70] proved that at a single datapoint the quadratic error of the en-
semble estimator is guaranteed to be less than or equal to the average quadratic error of the
component estimators:

(fens − d)2 =
∑

i

wi(fi − d)2 −
∑

i

wi(fi − fens)
2 (3.1)



CHAPTER 3. DEFINING DIVERSITY 27

where fens is a convex combination of the component estimators:

fens =
∑

i

wifi (3.2)

This result turns out to be very important for the focus of this thesis, so we present a
full proof. The details of the original proof from [70] were omitted for the authors’ space
considerations; we present the full details of their proof in appendix A. However, this can in
fact be shown more simply by the same manipulations as used in the bias-variance decom-
position (see section 2.1.3), reflecting a strong relationship between the two decompositions.
We present this alternative version here:

∑

i

wi(fi − d)2 =
∑

i

wi(fi − fens + fens − d)2

=
∑

i

wi[(fi − fens)
2 + (fens − d)2 + 2(fi − fens)(fens − d)]

=
∑

i

wi(fi − fens)
2 + (fens − d)2

(fens − d)2 =
∑

i

wi(fi − d)2 −
∑

i

wi(fi − fens)
2 (3.3)

This was a very encouraging result for ensemble research, providing a very simple ex-
pression for the effect due to error correlation in an ensemble. In section 3.2.4 we will
see how a number of researchers have exploited this result in various ways for learning in
ensembles. The significance of the Ambiguity decomposition is that it shows us that if we
have any given set of predictors, the error of the convex-combined ensemble will be less
than or equal to the average error of the individuals. Of course, one of the individuals may
in fact have lower error than the average, and lower than even the ensemble, on a particular
pattern. But, given that we have no criterion for identifying that best individual, all we
could do is pick one at random. One way of looking at the significance of the Ambiguity
decomposition is that it tells us that taking the combination of several predictors would be
better on average over several patterns, than a method which selected one of the predictors
at random.

The decomposition is made up of two terms. The first,
∑

i wi(fi − d)2, is the weighted
average error of the individuals. The second,

∑

i wi(fi − fens)
2 is the Ambiguity term,

measuring the amount of variability among the ensemble member answers for this pattern.
Since this is always positive, it is subtractive from the first term, meaning the ensemble is
guaranteed lower error than the average individual error. The larger the Ambiguity term,
the larger the ensemble error reduction. However, as the variability of the individuals rises,
so does the value of the first term. This therefore shows that diversity itself is not enough,
we need to get the right balance between diversity (the Ambiguity term) and individual
accuracy (the average error term), in order to achieve lowest overall ensemble error.

The Ambiguity decomposition holds for convex combinations, and is a property of an
ensemble trained on a single dataset. Unlike the bias-variance decomposition, it does not
take into account the distribution over possible training sets or possible weight initialisa-
tions. What we are interested in, of course, is the expected error on future datapoints given
these distributions. The Bias-Variance-Covariance decomposition [141] takes exactly this
into account.
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Bias, Variance and Covariance

The concept of ensemble diversity can be understood further if we re-examine the bias-
variance decomposition for an ensemble. If the ensemble is a uniformly weighted con-
vex combination, the variance term breaks down further, and we have the Bias-Variance-
Covariance decomposition [141]. However, from this point forward, it should be noted that
the expectations are subtly different to that in the original bias-variance decomposition.
The ith estimator is trained using a training set drawn from the random sequence Ti. Each
Ti, i = {1..M} has the same distribution, but they are not necessarily mutually indepen-
dent1. The expectations used below are therefore either over a particular Ti, over a subset
of them, or over all of them, T1, ..., TM . We denote this as:

ETi
{ · } = Ei{ · }

ETi,Tj
{ · } = Ei,j{ · }

ET1,...,TM
{ · } = E{ · }

It should be noted that although the decomposition presented below does hold for non-
uniformly weighted ensembles, we restrict our analysis to the uniform case, as it corresponds
to the simple average ensemble combination technique used commonly in practice. To aid
our exposition now, we define three concepts. The first concept is bias, the averaged bias
of the ensemble members:

bias =
1

M

∑

i

(Ei{fi} − d) (3.4)

The second is var, the averaged variance of the ensemble members:

var =
1

M

∑

i

Ei{(fi − Ei{fi})2} (3.5)

The third is covar, the averaged covariance of the ensemble members:

covar =
1

M(M − 1)

∑

i

∑

j 6=i

Ei,j{(fi − Ei{fi})(fj − Ej{fj})} (3.6)

We have the original bias-variance decomposition from equation (2.12):

ET {(f − d)2} = (ET {f} − d)2 + ET {(f − ET {f})2}

if the f here is a uniformly weighted combination of other components, then the variance
component can be broken down further:

V ar(
1

M

∑

i

fi) = E{( 1

M

∑

i

fi − E{ 1

M

∑

i

fi})2}

= E{( 1

M

∑

i

fi − E{ 1

M

∑

i

fi})(
1

M

∑

i

fi − E{ 1

M

∑

i

fi})}

1See [141] for details of the independent case.
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= E{ 1

M

∑

i

(fi − Ei{fi})
1

M

∑

j

(fj − Ej{fj})}

= E{ 1

M2

∑

i

∑

j

(fi − Ei{fi})(fj − Ej{fj})}

= E{ 1

M2

∑

i

∑

j 6=i

(fi − Ei{fi})(fj − Ej{fj})}+ E{ 1

M2

∑

j=i

(fj − Ej{fj})2}

= (1− 1

M
)

1

M(M − 1)

∑

i

∑

j 6=i

Ei,j{(fi − Ei{fi})(fj − Ej{fj})}

+
1

M

1

M

∑

j=i

Ej{(fj − Ej{fj})2}

= (1− 1

M
)covar +

1

M
var

Similarly, the bias component can be broken down:

bias(
1

M

∑

i

fi)
2 =

(

E{ 1

M

∑

i

fi} − d
)2

=
( 1

M

∑

i

(Ei{fi} − d)
)2

so we have the mean squared error of the ensemble estimator f̄ as:

E{(f̄ − d)2} = bias
2
+

1

M
var +

(

1− 1

M

)

covar (3.7)

We can see that the error of an ensemble of estimators depends critically on the amount
of error correlation between them, quantified in the covariance term. We would ideally like

to decrease the covariance, without causing any increases in the bias
2

or var terms.

The Connection Between Ambiguity and Covariance

We now show the exact link between the two decompositions we have just described. As-
suming a uniform weighting, we substitute the right hand side of equation (3.1) into the
left hand side of equation (3.7):

E{ 1

M

∑

i

(fi − d)2 − 1

M

∑

i

(fi − f̄)2} = bias
2
+

1

M
var +

(

1− 1

M

)

covar (3.8)

It would be interesting to understand what portions of the bias-variance-covariance
decomposition correspond to the ambiguity term. After some manipulations (proof in ap-
pendix B) we can show:
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E{ 1

M

∑

i

(fi − d)2} = bias
2
+ Ω (3.9)

and

E{ 1

M

∑

i

(fi − f̄)2} = Ω− 1

M
var −

(

1− 1

M

)

covar (3.10)

where the Ω term constitutes the interaction between the two parts of the ensemble error.
This is equal to:

Ω = =
1

M

∑

i

[
Ei{(fi − Ei{fi})2}

]
+

1

M

∑

i

[
(Ei{fi} − E{f̄})2

]
(3.11)

= var + deviations

This is the average variance of the networks, plus a term measuring the average devia-
tions of the individual expectations from the ensemble expectation. When we we combine
the two sides by subtracting the Ambiguity in equation (3.10), from the average MSE in
equation (3.9), the Ω interaction terms cancel out, and we get the original bias-variance-
covariance decomposition back, as in the RHS of equation (3.8). The fact that the interac-
tion exists illustrates why we cannot simply maximise Ambiguity without affecting the bias
component.

In this Section we have clearly identified how “diversity” is quantified for simple-averaging
ensembles, in terms of two separate but related error decompositions. It should be noted
that these two decompositions have told us merely how to quantify diversity, not how to
achieve it in this type of ensemble. In addition we have said nothing yet about ensemble
schemes involving other types of combination, such as voting or other non-linear schemes;
we will address this in the next section.

3.1.2 In a Classification Context

We know understand that in a regression context, we can rigorously define why and how
differences between individual predictor outputs contribute toward overall ensemble accu-
racy. In a classification context, there is no such neat theory. There is a subtle point here,
often overlooked. Difficulties in quantifying classification error diversity is not intrinsic to
ensembles tackling classification problems. It is possible to reformulate any classification
problem as a regression one by choosing to approximate the class posterior probabilities;
this allows the theory we have already discussed to apply, and work is progressing in this
area, notably2 Tumer and Ghosh [140] and Roli and Fumera [44, 114]. For the regression
context discussed in the previous section, the question can be clearly phrased as “how can
we quantify diversity when our predictors output real-valued numbers and are combined by
a convex combination?”. For the case that Tumer and Ghosh [140] study, the question is
the same, just that the “real-valued” numbers are probabilities. A much harder question
appears when we are restricted such that our predictors can only output discrete class la-
bels, as we have with Decision Trees or k-nearest neighbour classifiers. In this case, the

2It is interesting to note that some of the calculations in Tumer and Ghosh’s work rely fundamentally on
the bias-variance-covariance decomposition.
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outputs have no intrinsic ordinality between them, and so the concept of “covariance” is
not so simple. This non-ordinality also implies that we have to change our combination
function—a popular one is majority voting between the individual votes. The harder ques-
tion can therefore be phrased as, “how can we quantify diversity when our predictors output
non-ordinal values and are combined by a majority vote?”.

A step toward understanding this question can be taken by considering where the bias-
variance-covariance decomposition comes from: it falls neatly out of the bias-variance de-
composition of the ensemble error. However, when our classification of a datapoint is either
correct or incorrect, we have a zero-one loss function (instead of the usual quadratic loss
function we used for the regression context). A number of authors have attempted to define
a bias-variance decomposition for zero-one loss functions [68, 67, 14, 42], each with their
own assumptions and shortcomings. Most recently Domingos [33] and James [58] propose
general definitions which include the original quadratic loss function as a special case. This
leads us naturally to ask the question, does there exist an analogue to the bias-variance-
covariance decomposition that applies for zero-one loss functions?. If so, its formulation
of the “covariance” term will be a major stepping stone in our understanding of the role
of classification error diversity. The optimal classification error diversity will then be un-
derstood in terms of this trade-off for zero-one loss functions. This issue will be further
discussed in the Conclusions chapter.

Taking all this into account, there is simply no clear analogue of the bias-variance-
covariance decomposition when we have a zero-one loss function. We instead have a number
of highly restricted theoretical results, each with their own assumptions that are probably
too strong to hold in practice. We first describe the very well-known work by Tumer and
Ghosh, on combining posterior probability estimates (ordinal values), and then turn to
considering the harder question of non-ordinal outputs.

Ordinal Outputs

Tumer and Ghosh [139, 140] provided a theoretical framework for analysing the simple
averaging combination rule when our predictor outputs are estimates of the posterior prob-
abilities of each class. We already briefly summarised this in section 2.2.1 when we described
how to compute optimal convex combination weights for such predictors. We will now de-
scribe this framework in more detail.

Regard figure 3.3. For a one dimensional feature vector x, the solid curves show the true
posterior probabilities of classes a and b, these are P (a) and P (b), respectively. The dotted
curves show estimates of the posterior probabilities, from one of our predictors, these are
P̂ (a) and P̂ (b). The solid vertical line at x∗ indicates the optimal decision boundary, that is
the boundary that will minimise error given that our posterior probabilities overlap. This
overlap, the dark shaded area, is termed the Bayes error, and is an irreducible quantity.
The dotted vertical line at x̂∗ indicates the boundary placed by our predictor, which is a
certain distance from the optimal. The light shaded area indicates the added error that our
predictor makes in addition to the Bayes error.

The individual predictor i approximates the posterior probability of class a as:

P̂i(a|x) = P (a|x) + ηi(a|x) (3.12)

P (a|x) is the true posterior probability of class a and ηi(a|x) is the estimation error. Let
us assume the estimation errors on different classes a and b are independent and identically
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Figure 3.3: Tumer & Ghosh’s framework for analysing classifier error

distributed random variables [139, p5] with zero mean and variance σ2
ηi

. Consider the
predictor’s expected added error in distinguishing classes a and b, i.e. the expected size of
the light shaded area given the variance σ2

ηi
. This can be stated as:

Eadd,i =
2σ2

ηi

P ′(a|x)− P ′(b|x)
(3.13)

where P ′(a|x) is the derivative of the true posterior probability of class a. If the decision
boundary was placed by an ensemble of predictors, Tumer and Ghosh show the expected
added error of the ensemble estimator is:

Eens
add = Eadd

(1 + δ(M − 1)

M

)

(3.14)

where M is the number of classifiers. Eadd is the expected added error of the individual
classifiers: they are assumed to have the same error. δ is a correlation coefficient (see [139]
for details). If δ is zero, i.e. the classifiers in the ensemble are statistically independent, we
have Eens

add = 1
M Eadd, i.e. the error of the ensemble will be M times smaller than the error

of the individuals. If δ is 1, i.e. perfect correlation, then the error of the ensemble will just
be equal to the errors of the individuals.

A further assumption made in this work is that the estimation errors of the different
classifiers have the same variance σ2

ηi
. Another, possibly less critical assumption is that

the posterior probabilities are monotonic around the decision boundary. This work has
recently been extended by Roli and Fumera [114, 44], allowing for some of the assumptions
to be lifted, the most important of which is that it allows for the estimators to exhibit
unequal error variances (i.e. unequal performances on testing data). This demonstrates
that the understanding of this particular diversity formulation (when outputting posterior
probabilities) is progressing. What seems to be a sticking point for ensemble research is the
non-ordinal output case, as we will now illustrate.
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Non-Ordinal Outputs

In ensemble research, Hansen and Salamon [49] is seen by many as the seminal work on
diversity in neural network classification ensembles. They stated that a necessary and
sufficient condition for a majority voting3 ensemble of classifiers to be more accurate than
any of its individual members is if the classifiers are accurate and diverse. An accurate
classifier is one that has an error rate of better than random guessing, on new input.
Two classifiers are diverse if they make different errors on new data points. They used
the binomial theorem to explain this; we assume that all networks arrive at the correct
classification with probability (1− p), and that they make statistically independent errors.
The chances of seeing exactly k errors among the M networks is:

(
M

k

)

pk(1− p)(M−k) (3.15)

which gives the following probability of the majority voted ensemble being in error:

M∑

k>(M/2)

(
M

k

)

pk(1− p)(M−k) (3.16)

For example, with an ensemble of 21 predictors, combined with a majority vote, there would
have to be at least 11 members wrong in order for the whole ensemble to be wrong. The
area under the binomial distribution for 11 or more, and therefore the probability of the
ensemble being incorrect, is 0.026. It should be stressed though, this only applies when the
predictors are statistically independent, an assumption that is too strong to ever hold in
practice, but it does represent the theoretical (if unachievable) ideal.

From this point onwards, when referring to “classification error diversity”, it can be
assumed that we are referring to this difficult task of quantifying non-ordinal output diver-
sity. From the description of the problem as we have clearly stated, it seems deriving an
expression for classification diversity is not as easy as it is for regression. The ideal situation
would be a parallel to the regression case, where the squared error of the ensemble can be
re-expressed in terms of the squared errors of the individuals and a term that quantifies their
correlation. We would like to have an expression that similarly decomposes the classification
error rate into the error rates of the individuals and a term that quantifies their ‘diversity’.
At present, this is beyond the state of the art, however a number of empirical investigations
have gone into deriving heuristic expressions that may approximate this unknown diversity
term.

A Heuristic Metric for Classification Error Diversity?

A number of authors have tried to qualitatively define classification error ’diversity’. Sharkey
[123] suggested a scheme by which an ensemble’s pattern of errors could be described in
terms of a level of diversity. Four levels were proposed, each one describing the incidence
and effect of coincident errors amongst the members of the ensemble and the degree to
which the target function is covered by the ensemble. A coincident error occurs when, for
a given input, more than 1 ensemble member gives an incorrect answer. Function coverage

3They also present results for plurality voting, which turns out to be far more complex.
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is an indication of whether or not a test input yields a correct answer on ANY of the neural
networks in the ensemble.

Level 1 No coincident errors, the target function is covered. Majority vote always produces
the correct answer.

Level 2 Some coincident errors, but the majority is always correct and the function is
completely covered. The ensemble size must be greater than 4 for this to hold.

Level 3 A majority vote will not always yield the right answer, but the members of the
ensemble cover the function such that at least one always has the correct answer for
a given input.

Level 4 The function is not always covered by the members of the ensemble.

Sharkey acknowledges that ensembles exhibiting level 2 or 3 diversity could be “upwardly
mobile” as it is possible that an ensemble labelled as having level 2 diversity could contain a
subset of neural networks displaying level 1 diversity using the test set and a level 3 ensemble
could contain subsets of neural networks displaying level 1 and/or level 2 diversity on the
test set, thus removal of certain networks could result in a change of diversity level for the
better.

Carney and Cunningham [25] suggested an entropy-based measure, though this does
not allow calculation of an individual’s contribution to overall diversity. Zenobi and Cun-
ningham [157] proposed a measure of classification ambiguity. The ambiguity of the ith
classifier, averaged over N patterns, is

Ai =
1

N

N∑

n=1

ai(xn) (3.17)

where ai(xn) is 1 if the output of individual i disagrees with the ensemble output, and
0 otherwise. The overall ensemble ambiguity is:

Ā =
1

N

N∑

n=1

1

M

M∑

i=1

ai(xn) (3.18)

The vast majority of empirical evidence examining classifier diversity is due to Kuncheva
[72, 73, 74, 75, 76, 79, 129, 130]. These studies have explored several measures of diversity
from the numerical taxonomy literature.

They emphasize two styles of measuring diversity, pairwise and non-pairwise. Pairwise
measures calculate the average of a particular distance metric between all possible pair-
ings of classifiers in the ensemble. Which distance metric is used therefore determines the
characteristics of the diversity measure. The non-pairwise measures either use the idea
of entropy or calculate a correlation of each ensemble member with the averaged output.
Among the myriad of metrics studied, was the Q-statistic, which we will now consider. Take
two classifiers, fi and fj . Over a large set of testing patterns, they will exhibit certain coin-
cident errors, and therefore a probability of error coincidence can be calculated. Table 3.1
illustrates this, assigning a label a,b,c, or d to each type of coincidence.
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fi correct fj wrong

fi correct a b

fi wrong c d

Table 3.1: Probabilities of coincident errors between classifier fi and fj . It should be noted,
by definition, a + b + c + d = 1.

The Q statistic between classifier i and classifier j is:

Qi,j =
ad− bc

ad + bc
(3.19)

The Q statistic overall for an ensemble is calculated by taking the average Q-value from
all possible pairings of the ensemble members. In addition to the Q statistic, several other
metrics were examined. Extensive experimental work was conducted to find a measure of
diversity that would correlate well with majority vote accuracy. In a summary paper of her
own work, Kuncheva states:

“although a rough tendency was confirmed ... no prominent links appeared between the
diversity of the ensemble and its accuracy. Diversity alone is a poor predictor of the ensemble
accuracy.” [74]

It can be argued that we should not in fact be looking for a metric which will “correlate
well with ensemble accuracy”, as many authors seem to be searching for. In a regression
context, the portion of the ensemble error corresponding to diversity is the covariance term.
It can be seen that this does not “correlate well” with the mean squared error, since it is
intrinsically part of the ensemble error. Liu [85] conducted studies of the bias, variance and
covariance of an ensemble, illustrating the nature of this three-way trade-off. This work
showed that diversity (the covariance term) can be pushed too far, causing the other two
components to rise. We emphasize that most probably the same principle will one day be
shown for the ensemble majority vote accuracy. It can easily be shown in a hypothetical
scenario, that maximum classification diversity can in be harmful if individual accuracy is
not maintained. Take the hypothetical situation in table 3.2.

A B C

Pattern 1 1 0 0

Pattern 2 0 1 0

Pattern 3 0 0 1

Pattern 4 0 0 0

Table 3.2: Error coincidences for three classifiers on a small hypothetical dataset. The
presence of a one (1) in the table indicates that the classifier got the pattern correct, while
a zero (0) indicates an error was made.

The situation in table 3.2 follows Kuncheva’s method of analysing classifier diversity,
in modelling the error coincidences. The presence of a one (1) in the table indicates that
the classifier got that pattern correct, while a zero (0) indicates an error was made. For
example, pattern 1 was correctly classified by B and C, but not A, and pattern 4 was
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misclassified by all three classifiers. The Q statistic for this arrangement is -1, maximum
diversity, yet the ensemble majority vote accuracy is zero. This can be explained by the
fact that the individual accuracies have dropped to 0.25. The ensemble has underperformed
the individual classifiers due to this harmful diversity.

In spite of these seemingly intuitive definitions for diversity, none has yet been proved to
have a definite link to overall ensemble error. It seems the amorphous concept of “diversity”
is elusive indeed.

We have now reviewed the state of the field with regard to explanations of what the
term ‘diversity of errors’ means, and why it can lead to improved ensemble performance. In
conclusion, the community puts great stead in the concept of classification error “diversity”,
though it is still an ill-defined concept. The lack of a definition for diversity has not stopped
researchers attempting to achieve it. So how do you make an effective, well-performing
ensemble?

3.2 Towards A Taxonomy of Methods for Creating Diversity

We have determined in the previous section that in both regression and classification con-
texts, the correlation between the individual predictor outputs has a definite effect on the
overall ensemble error, though for classification it is not yet formalised in the literature. In
this section we attempt to move towards a possible way to understand the many different
methods which researchers use to create an ensemble exhibiting error diversity; we show
that these schemes can be categorised along three “diversity-creation” axes.

In constructing the ensemble, we may choose to take information about diversity into
account, or we may not; i.e. we may or may not explicitly try to optimise some metric of
diversity during building the ensemble. We make a distinction between these two types,
explicit and implicit diversity methods. A technique such as Bagging is an implicit method,
it randomly samples the training patterns to produce different sets for each network; at no
point is a measurement taken to ensure diversity will emerge. Boosting is an explicit method,
it directly manipulates the training data distributions to ensure some form of diversity in
the base set of classifiers (although it is obviously not guaranteed to be the ‘right’ form of
diversity).

During learning, a function approximator follows a trajectory in hypothesis space. We
would like the networks in our ensemble to occupy different points in that hypothesis space.
While implicit methods rely on randomness to generate diverse trajectories in the hypothesis
space, explicit methods deterministically choose different paths in the space. In addition to
this high level dichotomy, there are several other possible dimensions for ensuring diversity
in the ensemble.

Sharkey [124] proposed that a neural network ensemble could be made to exhibit di-
versity by influencing one of four things: the initial weights, the training data used, the
architecture of the networks, and the training algorithm used. This means providing each en-
semble member with a different training set, or a different architecture, and so on. Though
at first this seems a sensible way to group the literature, we found it difficult to group all
ensemble techniques under these umbrellas. Specifically we could not see where a regular-
isation technique [117, 85] would fit. If we regularise the error function, we are changing
none of Sharkey’s four factors. Instead we came to the following categories upon which we
believe the majority of neural network ensemble techniques can be placed.
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Starting point in Hypothesis Space Methods under this branch vary the starting points
within the search space, thereby influencing where in hypothesis space we converge
to.

Set of Accessible Hypotheses These methods vary the set of hypotheses that are acces-
sible by the ensemble. Given that certain hypotheses may be made accessible or inac-
cessible with a particular training subset and network architecture, these techniques
either vary training data used, or the architecture employed, for different ensemble
members.

Traversal of Hypothesis Space These alter the way we traverse the search space, thereby
leading different networks to converge to different hypotheses.

3.2.1 Starting Point in Hypothesis Space

Starting each network with differing random initial weights will increase the probability of
continuing in a different trajectory to other networks. This is perhaps the most common
way of generating an ensemble, but is now generally accepted as the least effective method
of achieving good diversity; many authors use this as a default benchmark for their own
methods [101]. We will first discuss implicit instances of this axis, where weights are gen-
erated randomly, and then discuss explicit diversity for this, where networks are directly
placed in different parts of the hypothesis space.

Sharkey, Neary and Sharkey [128] investigated the relationship between initialisation of
the output weight vectors and final backpropagation solution types. They systematically
varied the initial output weight vectors of neural networks throughout a circle of radius 10
and then trained them using the fuzzy XOR task with a fixed set of training data. The
resulting networks differed in the number of cycles in which they took to converge upon
a solution, and in whether they converged at all. However, the trained neural networks
were not found to be statistically independent in their generalisation performance, i.e. they
displayed very similar patterns of generalisation despite having been derived from different
initial weight vectors. Thus, varying the initial weights of neural networks, although im-
portant when using a deterministic training method such as backpropagation, seems not to
be an effective stand-alone method for generating error diversity in an ensemble of neural
networks.

These observations are supported by a number of other studies. Partridge [107, 155]
conducted several experiments on large (> 150, 000 patterns) synthetic data sets, and con-
cludes that after network type, training set structure, and number of hidden units, the
random initialization of weights is the least effective method for generating diversity. Par-
manto, Munro and Doyle [12] used one synthetic dataset and two medical diagnosis datasets
to compare 10-fold cross-validation, Bagging, and random weight initializations; again the
random weights method comes in last place.

We have now discussed implicit diversity methods for manipulating the starting point
in hypothesis space. We will next discuss an explicit method for this, where randomisation
of weights does not occur.

Maclin and Shavlik [89] present an approach to initializing neural network weights that
uses competitive learning to create networks that are initialised far from the origin of weight
space, thereby potentially increasing the set of reachable local minima; they show signifi-
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cantly improved performance over the standard method of initialization on two real world
datasets.

A technique relevant to this discussion, Fast Committee Learning [132] trains a single
neural network, taking M snapshots of the state of its weights at a number of instances
during the training. The M snapshots are then used as M different ensemble members.
Although the performance was not as good as when using separately trained nets, this offers
the advantage of reduced training time as it is only necessary to train one network.

3.2.2 Set of Accessible Hypotheses

It can be argued that there are two ways to manipulate the set of hypotheses accessible to a
network: firstly to alter the training data it receives, and secondly to alter the architecture
of the network itself. We will now discuss these and how they have been used to create
error diversity.

Manipulation of Training Data

Several methods attempt to produce diverse or complementary networks by supplying each
network with a slightly different training set. This is probably the most widely investigated
method of ensemble training. Regard figure 3.4; the frontmost bold square represents the
training set for our ensemble. Different ensemble members can be given different parts of
this set, so they will hopefully learn different things about the same task. Some methods
will divide it by training pattern, supplying each member with all the K features, but a
different subset of the rows (patterns). Other methods will divide it by feature, supplying
each member with all the N patterns in the set, but each consists of a different subset of
the columns (features). Both of these are termed resampling methods, and could provide
overlapping or non-overlapping subsets of the rows or columns (or both) to different learners.
Another alternative would be to pre-process the features in some way to get a different
representation, for example using a log-scaling of the features. This can be viewed in our
diagram as using a different plane, moving in the space of all possible features. The data
techniques which transform features are termed distortion methods [127].

N training
patterns

K features

Space of all
possible features

Figure 3.4: Space of possible training sets for an ensemble
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Duin and Tax [35] find that combining the results of one type of classifier on different
feature sets is far more effective than combining the results of different classifiers on one
feature set. They conclude that the combination of independent information from the
different feature sets is more useful than the different approaches of the classifiers on the
same data.

The most well-known resampling method is probably k-fold cross-validation. By dividing
the dataset randomly into k disjoint pattern subsets, new overlapping training sets can be
created for each ensemble member, by leaving out one of these k subsets and training on
the remainder. The Bagging algorithm, is another example, randomly selecting N patterns
with replacement from the original set of N patterns.

Sharkey [125, 126] uses a distortion method to re-represent some features in an engine-
fault diagnosis task. Two classifiers are provided with the original data to learn on, while
a third is provided with the data after it has been passed through an untrained neural
network. This essentially applies a random transformation to the features, yet Sharkey
shows an ensemble using this technique can outperform an ensemble of classifiers using only
the non-transformed data. Intrator and Raviv [113] report that simply adding Gaussian
noise to the input data can help. They create a bootstrap resample, like Bagging, but then
add a small amount of noise to the input vector. Several ensembles are then trained, using
weight regularisation, to get a good estimate of the generalisation error. The process is
then repeated with a different noise variance, to determine the optimal level. On test data,
they show significant improvements on synthetic and medical datasets.

So far we have discussed how the input patterns could be resampled or distorted;
Breiman [15] proposed adding noise to the outputs in the training data. This technique
showed significant improvements over Bagging on 15 natural and artificial datasets; how-
ever when comparing to AdaBoost, no improvements were found.

We have now covered a number of papers which use randomisation of the training data
to create diversity, therefore these are all so far implicit diversity methods. We will now
turn to considering explicit methods, which deterministically change the data supplied to
each network.

The very popular AdaBoost algorithm [40] explicitly alters the distribution of training
data fed to each member. The distribution is recalculated in each round, taking into account
the errors of the immediately previous network. Oza [104] presents a variant of AdaBoost
that calculates the distribution with respect to all networks trained so far. In this way the
data received by each successive network is explicitly ‘designed’ so that their errors should
be diverse and compensate for one another.

Zenobi and Cunningham [157] use their own metric of classification diversity, as defined
in equation (3.18) to select subsets of features for each learner. They build an ensemble
by adding predictors successively, and use their metric to estimate how much diversity is
in the ensemble so far. The feature subset used to train a predictor is determined by a
hill-climbing strategy, based on the individual error and estimated ensemble diversity. A
predictor is rejected if it causes a reduction in diversity according to a pre-defined threshold,
or an increase in overall ensemble error. In this case a new feature subset is generated and
another predictor trained. The DECORATE algorithm, by Melville and Mooney [97] utilises
the same metric to decide whether to accept or reject predictors to be added to the ensemble.
Predictors here are generated by training on the original data, plus a ‘diversity set’ of
artificially generated new examples. The input vectors of this set are first passed through
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the current ensemble to see what its decision would be. Each pattern in the diversity set has
its output re-labelled as the opposite of whatever the ensemble predicted. A new predictor
trained on this set will therefore have a high disagreement with the ensemble, increasing
diversity and hopefully decreasing ensemble error. If ensemble error is not reduced, a new
diversity set is produced and a new predictor trained.

Oza and Tumer [105] present Input Decimation Ensembles, which seeks to reduce the
correlations among individual estimators by using different subsets of the input features.
Feature selection is achieved by calculating the correlation of each feature individually with
each class, then training predictors to be specialists to particular classes or groups of classes.
This showed significant benefits on several real [103] and artificial [105] datasets.

Liao and Moody [84] demonstrate an information-theoretic technique for feature selec-
tion, where all input variables are first grouped based on their mutual information [51,
p492]. Statistically similar variables are assigned to the same group, and each member’s
input set is then formed by input variables extracted from different groups. Experiments
on a noisy and nonstationary economic forecasting problem show it outperforms Bagging
and random selection of features.

Several authors use domain knowledge to divide features between predictors. For ex-
ample, Sharkey and Chandroth [126] use pressure and temperature information to indicate
properties of an engine; and Wan [145] combines information from the fossil record with
sunspot time series data to predict future sunspot fluctuations.

Most of the methods we have discussed manipulate input data. Dietterich and Bakiri [31]
manipulate the output targets with Error-Correcting Output Coding. Each output class in
the problem is represented by a binary string, chosen such that it is orthogonal (or as
close as possible) from the representation of the other classes. For a given input pattern, a
predictor is trained to reproduce the appropriate binary string. During testing, if the string
produced by the predictor does not exactly match the string representing one of the classes,
the Hamming distance is measured to each class, and the closest is chosen. Kong and
Dietterich [68] investigate why this technique works. They find that, like Bagging, ECOC
reduces the variance of the ensemble, but in addition can correct the bias component. An
important point to note for this result is that the 0-1 loss bias-variance decomposition
utilised assumes a Bayes rate of zero, i.e. zero noise.

Manipulation of Network Architectures

The number of investigations into using different types of neural network in ensembles is
disappointingly small. If we want diverse errors in our ensemble, it makes sense that using
different types of function approximator may produce this. Partridge [107, 106] concludes
that variation in numbers of hidden nodes is, after initial weights, the least useful method
of creating diversity in neural network ensembles, due to the methodological similarities in
the supervised learning algorithms. However, the number of hidden nodes was only varied
between 8 and 12, and on a single dataset; such a limited experiment indicates there is
still some work to be done here. Partridge also used MLPs and radial basis functions in
an ensemble to investigate the effect of network type on diversity, finding this was a more
productive route than varying hidden nodes [155].

The vast majority of ensemble training methods are used to change the network weights.
The structure of the ensemble, e.g., the number of NNs in the ensemble, and the structure of
individual NNs, e.g., the number of hidden nodes, are all designed manually and fixed dur-
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ing the training process. While manual design of NNs and ensembles might be appropriate
for problems where rich prior knowledge and an experienced NN expert exist, it often in-
volves a tedious trial-and-error process for real-world problems because rich prior knowledge
and experienced human experts are hard to get in practice. Opitz and Shavlik’s Addemup
algorithm [102], used an evolutionary algorithm to optimise the network topologies com-
posing the ensemble. Addemup trains with standard backpropagation, then selects groups
of networks with a good error diversity according to the measurement of diversity. Another
recently proposed algorithm, CNNE [53], constructively builds an ensemble, monitoring di-
versity during the process. CNNE simultaneously designs the ensemble architecture along
with training of individual NNs, whilst directly encouraging error diversity. It determines
automatically not only the number of NNs in an ensemble, but also the number of hid-
den nodes in individual NNs. It uses incremental training based on Negative Correlation
learning [85] in training individual NNs. It is entirely possible for an ensemble consisting
of networks with very different architectures to emerge in such incrementally constructed
ensembles.

Although this thesis is focusing on combining neural networks, for completeness of this
section we feel it is necessary to mention that a few experiments have been done with
hybrid ensembles. Wang et al [146] combined decision trees with neural networks. They
found that when the neural networks outnumbered the decision trees, but there was at least
1 decision tree, the system performed better than any other ratio. Langdon [82] combines
decision trees with neural networks in an ensemble, and uses Genetic Programming to
evolve a suitable combination rule. Woods et al [150] combines neural networks, k-nearest
neighbour classifiers, decision trees, and Quadratic Bayes classifiers in a single ensemble,
then uses estimates of local accuracy in the feature space to choose one classifier to respond
to a new input pattern.

Conclusions from the studies on hybrid ensembles seem to indicate that they will produce
estimators with differing specialities and accuracies in different regions of the space—it
seems sensible that two systems which represent a problem and search the space in radically
different ways will show different strengths, and therefore different patterns of generalisation.
This specialisation implies that with hybrid ensembles, selection of a single estimator rather
than fusion of the outputs of all estimators may be more effective. The dynamic selection
method by Woods et al [150] could easily be applied to an ensemble containing networks
with differing numbers of hidden nodes, having first used an algorithm like CNNE [53] to
ensure a the network architectures are established appropriately to ensure a diversity of
errors.

3.2.3 Hypothesis Space Traversal

Given a particular search space, defined by the architecture of the network and training data
provided, we could occupy any point in that space to give us a particular hypothesis. How
we choose to traverse the space of possible hypotheses determines what type of ensemble
we will end up with.

Regularisation Methods

Some authors have found benefit from using a regularisation term in the error function
for the network. The justification from this stems from Tikhonov’s work on ill-posed prob-
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lems [133]. This showed that including another term in the error function, in addition
to the objective function, could effectively control the bias-variance trade-off4. Using this
approach, the error of network i becomes:

ei =
1

2
(fi − d)2 + λR (3.20)

where λ is a weighting parameter on the regularisation term R. The λ parameter controls a
trade-off between the two terms; with λ = 0 we would have an ensemble with each network
training with plain backpropagation, and as λ increases more and more emphasis would be
placed on minimising whatever the regularisation term is chosen to be.

The usual method of Tikhonov Regularisation uses derivatives of the objective function
to make up the regularisation term. However we can employ the same principle to control
a trade-off between two objectives: individual accuracy and ensemble diversity. If we want
to enforce diversity, the regularisation term can quantify the amount of correlation in some
way, so that it can be minimised explicitly during the training—as such, this is a type of
explicit diversity method. Rosen [117] used a regularisation term:

R =
i−1∑

j=1

c(j, i)pi (3.21)

where c(j, i) is an indicator function specifying decorrelation between networks j and i,
and pi is a penalty function:

pi = (fi − d)(fj − d) (3.22)

the product of the ith and jth network biases. The indicator function c(j, i) specifies which
networks are to be decorrelated. To penalise a network for being correlated with the previous
trained network, the indicator function is:

c(j, i) =

{
1 if i = j − 1
0 otherwise.

(3.23)

Negative Correlation (NC) Learning [85] extended Rosen’s work by training the networks
in parallel. NC has a regularisation term:

R = pi = (fi − f̄)
∑

j 6=i

(fj − f̄) (3.24)

where f̄ is the average output of the whole ensemble of M networks at the previous timestep.
NC has seen a number of empirical successes [85, 86, 87], consistently outperforming a simple
ensemble system. Figure 3.5 shows the algorithm assuming a gradient descent method is
used to learn the predictors. An important point to note here is that Liu calculates the
derivative using the assumption that f̄ is a constant with respect to fi; the exact details
and implications of this assumption will be considered in the next chapter.

McKay and Abbass [95, 94] recently presented Root Quartic Negative Correlation Learn-
ing (RTQRT), based on an alternative penalty term. The technique was applied to a ge-
netic programming system, and shown to outperform standard NC on larger ensembles.

4Bishop [9] showed that training a neural network with noise added to the input patterns was equivalent
to Tikhonov Regularization
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1. Let M be the final number of predictors required.

2. Take a training set t = {(x1, d1), ..., (xN , dN )}.

3. For each training pattern from n = 1 to N do :

(a) Calculate f̄ = 1
M

∑

i fi(xn)

(b) For each network from i = 1 to M do:

• Perform a single update for each weight in network i using:

ei = 1
2(fi(xn)− dn)2 + λ(fi(xn)− f̄)

∑

j 6=i(fj(xn)− f̄)

∂ei

∂fi
= (fi(xn)− dn)− λ(fi(xn)− f̄)

For any new testing pattern x, the ensemble output is given by:

f̄ =
1

M

∑

i

fi(x)

Figure 3.5: The Negative Correlation Learning Algorithm

The penalty term used was:

pi =

√
√
√
√ 1

M

M∑

i=1

(fi − d)4, (3.25)

the derivative of this is:

∂pi

∂fi
=

1√
M
× 2

∑M
i=1(fi − d)3

√
∑M

i=1(fi − d)4
(3.26)

Standard backpropagation presents a certain error landscape to an ensemble system.
NC and RTQRT add penalty terms to this, providing each network within the ensemble
with a different landscape to work in. It has been shown that the minimisation of error
in each of these landscapes can reduce error further than using the normal unregularised
landscapes.

Evolutionary Methods

The term “diversity” is also often used in the evolutionary computation literature, in the
context of maintaining diversity in the population of individuals you are evolving [1, 29, 64].
This has a very different meaning to the concept of diversity as discussed in this thesis. In



CHAPTER 3. DEFINING DIVERSITY 44

evolutionary algorithms, we wish to maintain diversity in order to ensure we have explored
a large area of the search space and not focussed our search onto an unprofitable area.
When we decide our search has continued for long enough, we will typically take the best
performing individual found so far, ignoring the other individuals in the population. The
optimal diversity in this context will be that which optimises the explore-exploit trade off,
such that the best points in the search space are found quickly and efficiently. This is
in contrast to ensemble diversity methods, which create diversity with the intention that
the ‘population’ of ensemble members will be combined. As such, evolutionary diversity
methods do not concern themselves with creating a population that is complementary in
any way, but instead with just ensuring the maximum amount of the hypothesis space is
being explored in order to find the best single individual.

In spite of these differences, some researchers have found interesting parallels. Yao [153]
evolves a population of neural networks, using fitness sharing techniques to encourage di-
versity, then combines the entire population as an ensemble instead of just picking the best
individual.

3.2.4 The Ambiguity Family

Krogh and Vedelsby [70] provided the Ambiguity decomposition, showing that the ensemble
error could be broken down into two terms, one of which is dependent on the correlations
between networks. In this section we define the Ambiguity Family of ensemble methods, all
of which exploit Krogh and Vedelsby’s result. Since they all measure diversity explicitly,
they are a subset of the previously defined explicit diversity methods.

In the last few years, the ambiguity decomposition has quietly been utilised in almost
every aspect of ensemble construction. Krogh and Vedelsby themselves developed an active
learning scheme [70], based on the method of query by committee, selecting patterns to train
on that had a large ambiguity; this showed significant improvements over passive learning
in approximating a square wave function. In the same paper an estimate of ambiguity is
used to optimise the ensemble combination weights; this showed in some cases it is optimal
to set a network weight to zero, essentially removing it from the ensemble.

Opitz [100] selected feature subsets for the ensemble members to train on, using a
genetic algorithm with an ambiguity-based fitness function; this showed gains over Bagging
and Adaboost on several classification datasets from the UCI repository. A precursor to
this work was Opitz and Shavlik’s Addemup algorithm [102], which used the same fitness
function to optimise the network topologies composing the ensemble. Addemup trains
with standard backpropagation, then selects groups of networks with a good error diversity
according to the measurement of ambiguity.

We can see that Ambiguity has been utilised in many ways: pattern selection [70],
feature selection [100], optimising the topologies [102] of networks in the ensemble, and
optimising the combination function [70].
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3.3 Chapter Summary

In this chapter we reviewed the existing theoretical and heuristic explanations of what error
“diversity” is, and how it affects the error of the overall ensemble. We described the two
most prominent theoretical results for regression ensembles: the Ambiguity Decomposition
and the bias-variance-covariance decomposition. We demonstrated what we believe to be
the first formal link between these two, showing how they relate to each other. This link
turns out to be crucial to further results we present in chapter 5.

We described the current state of the art in formalising the concept of diversity for clas-
sification ensembles, illustrating the clearly that the problem is actually one of quantifying
some form of correlation between non-ordinal predictor outputs. In the process of this we
show a paradox in that though diversity is widely sought after, it is still ill-defined. We
then suggested that an analogue of the bias-variance-covariance decomposition that applies
for 0-1 loss functions may be a useful research direction in this area; this will be further
discussed in the Conclusions chapter.

Following on from this review of theoretical results supporting diversity, we reviewed
practical techniques that have been applied to create well-performing ensembles exhibiting
diversity. We suggested a possible way to structure the field, based on how techniques
choose to create error diversity—we noted that this improves upon a previously suggested
taxonomy [124] of neural network ensembles. As a parallel to this taxonomy, we introduced
the Ambiguity family of methods, all of which exploit the Ambiguity decomposition of the
ensemble error.

In the Introduction chapter we described our motivation for this work: to better under-
stand “diversity” and how to create it. One particular learning technique we mentioned in
section 3.2.3 claims to enforce diversity (both regression and classification) with a regular-
isation term in the error function. This is Negative Correlation Learning [85], and will be
our focal point for the remainder of the thesis.



Chapter 4

Parameter Selection in Negative

Correlation Learning

I n the previous chapter we introduced Negative Correlation (NC) learning [85]. This tech-
nique utilises a regularisation term added to the original backpropagation error function

to penalise correlated errors between networks in the ensemble, which serves to encourage
lower overall ensemble error. The amount of regularisation is controlled by a strength pa-
rameter, λ; optimising this parameter with respect to the mean squared error can bring
statistically significant improvements in performance [18, 85, 86, 94, 152]. Previous work
by Liu [85] and other authors has shown that the optimum λ value is task-dependent, and
can also vary with the configuration of the ensemble. Liu [85] reports experiments with the
λ values 0.0, 0.25, 0.5, 0.75 and 1.0, but no values outside this range or any intermediate
values. Liu does present a hypothesis that the bounds of λ should be [0, 1], but this makes
an assumption that can be questioned, as will be detailed in chapter 5. In fact we have
no definite evidence about the shape or range of the λ search landscape. It may well be
the case that the landscape is highly rugged, meaning the optimum may be difficult to
locate, or there may be multiple optima with equivalent error values. It may also be the
case optimum values can exist beyond [0, 1]. In general, we would like to understand the
behaviour of λ under different circumstances.

What options do we have for understanding the λ landscape? We could perform an
exhaustive search; however to do this within a reasonable amount of time we would need to
make assumptions about the range to search, for example between −1 and +1, and also on
the resolution at which we will sample the space. We may end up overlooking an optimum,
or missing it entirely if it is outside our assumed range. We could perform a gradient descent
or hill climbing strategy; however it is well known that these approaches are prone to being
caught in local minima. Alternatively, we could use an evolutionary search algorithm [4].
This type of algorithm conducts a parallelized stochastic search over a space, and can often
escape local minima; in addition, an appropriately chosen evolutionary technique could
efficiently explore values outside the [0, 1] range and possibly provide solutions we had not
considered. In the following section we employ an evolutionary algorithm to set λ for various
different ensemble configurations and datasets.
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4.1 An Evolutionary Approach to Setting λ

4.1.1 Method

Evolutionary algorithms can search a space of solutions to a given problem by distributing
a population of candidate solutions (called ‘individuals’) over the space and using principles
of natural evolution to ‘breed’ this population. The performance of an individual is assessed
by a pre-defined fitness function. A special case of evolutionary algorithms is evolutionary
programming—this is especially suited to optimisation of real-valued numbers. We use
the Improved Fast Evolutionary Programming (IFEP) algorithm [151] to optimise the λ

parameter. We need to explore the search space of possible λ values thoroughly in order
to be sure we have located the optimal setting; the IFEP algorithm is known for good
exploration without getting stuck in local minima [151] and so is suited to our task. The
IFEP algorithm is described in figure 4.1.

We use a population size of P = 10, and the algorithm was allowed to run for a total
of 100 generations. The initial values of the λi variables were chosen from a Gaussian
distribution with mean zero and variance one. The initial values of the ηi variables were
all set at 3.0; this corresponds to the standard deviation of the Gaussian mutations, so 3.0
means it is possible for a mutation to produce a new λ value up to 3.0 standard deviations
away from a parent.

The fitness function to be maximised is the reciprocal of the mean squared error on the
testing data:

F (λ) =
1

1
N

∑N
n=1(f̄λ(xn)− dn)2

(4.4)

where N is the number of testing patterns, f̄λ(xn) is the output of the ensemble on
pattern n after training using NC with the relevant λ value, and dn is the target for that
pattern.

All networks are multilayer perceptrons, using learning rate α = 0.1, with a single
hidden layer; all hidden nodes use sigmoid activation functions. For dataset 1, we use a
linear output activation function, while for dataset 2 we use a sigmoid output activation
function. The ensemble is combined by a uniformly weighted linear combination.

Dataset 1: Boston Housing

This regression dataset concerns housing values in suburbs of Boston, the problem is to
predict the median house price given a number of demographic features. There are 506
examples, each containing 13 input variables (12 continuous, 1 binary), and 1 continuous
output variable in the range 0 to 50. All input variables were linearly rescaled, independently
of each other, to be in the range [0, 1], and the output variable was linearly rescaled to
[−1, 1]. Networks were trained for 1000 iterations; we used 5-fold cross-validation, with
each fold being evaluated from 40 trials of random weights, giving a total of 200 trials for
each experiment. Whenever mentioned, the mean squared error on this dataset refers to an
average over these 200 trials.
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Dataset 2: Phoneme

This classification dataset is a French and Spanish phoneme recognition problem from the
Elena project [47]; the problem is to distinguish between nasal (AN, IN, ON) and oral
(A, I, O, E) vowels. The data has 5404 examples, each with 5 continuous valued inputs
(the normalized amplitudes of the five first harmonics), and 1 binary output. The data is
available in two forms, the original unscaled version, and a version where all input variables
were rescaled to have zero mean and variance 1; we use the latter, rescaled form. Networks
were trained for 500 iterations. We divided the dataset into 5 equal sized portions; we
trained on one fifth of the data (1080 examples), then tested on the remaining four fifths
(4324 examples). This was repeated 5 times so each portion was used in turn as training
data. Each time, the ensemble was evaluated from 40 trials of random weights, giving a
total of 200 trials for each experiment. Whenever mentioned, the mean squared error on
this dataset refers to an average over these 200 trials.

4.1.2 Results

All results are reported as averages over 10 runs of the IFEP algorithm; on close examination
of the evolutionary run, it was confirmed that the algorithm had explored and discarded
several λ values well above 1.0 and well below 0.0. The near optimal values found for λ

were confirmed in each case as providing a statistically significant gain (two-tailed t-test,
α = 0.05) over λ = 0.0.

Optimal λ as we add more networks to the ensemble

Figures 4.2 and 4.3 show results as we increase the size of the ensemble; the two datasets
seem to exhibit opposite trends for optimal λ. On the Phoneme dataset, using simple
networks (2 hidden nodes), the value seems relatively constant at ∼ 0.93, but changes and
becomes more variable with more complex networks. On the Boston dataset, the converse
seems to be true; λ∗ stabilizes to ∼ 0.9 when we use more complex networks. The pattern
that seems to be common between the two datasets shows up using the largest ensemble,
12 networks; in this case, λ∗ ≈ 0.9, relatively invariant to the complexity of the networks.

Optimal λ as we add more hidden nodes to the networks

Figures 4.4 and 4.5 show results as we increase the complexity of the ensemble members. On
the Boston dataset, when we have just two networks, then adding more hidden nodes per
network seems to push optimal λ up; however on the Phoneme data, we see the opposite,
pushing the optimal value down. For both datasets, when we have a large ensemble, then
adding hidden nodes to networks caused a slight downward trend in λ∗.
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1. Generate the initial population of P individuals randomly, and set g = 0.
Each individual is taken as a pair of real valued numbers (λi, ηi), ∀i ∈
{1, · · · , P}, where λi’s are the objective variables to be optimised and ηi’s
are strategy parameters that determine the search step size of mutation.

2. Evaluate the fitness score for each individual in this g = 0 initial random
population (λi, ηi), ∀i ∈ {1, · · · , P}, of the population based on the fitness
function, F (λi).

3. Each parent (λi, ηi), i = 1, · · · , P , creates two offspring (λi
′N , ηi

′) and
(λi

′C , ηi
′) by:

ηi
′ = ηi exp(τ ′N(0, 1) + τN(0, 1)), (4.1)

λi
′N = λi + ηi

′N(0, 1), (4.2)

λi
′C = λi + ηi

′C(0, 1), (4.3)

N(0, 1) denotes a normally distributed one-dimensional random number with
mean zero and standard deviation one. C(0, 1) means a Cauchy distributed
random number with mean zero and scaling parameter t = 1. The factors

τ and τ ′ are set to
(√

2
√

l
)−1

and
(√

2l
)−1

, where l = 1, the dimension of

the objective variable we are evolving, as in Bäck and Schwefel [4].

4. Calculate the fitness of each offspring pair (λi
′N , ηi

′) and (λi
′C , ηi

′), ∀i ∈
{1, · · · , P}. For each pair of Cauchy and Gaussian offspring produced from
the same parent, discard the one with the lowest fitness.

5. Select the best P individuals from the set of all remaining offspring and
parents to become the next generation.

6. Stop if the halting criterion is satisfied; otherwise, g = g+1 and go to Step 3.

Figure 4.1: Improved Fast Evolutionary Programming Algorithm, with Truncation Selection
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Figure 4.2: Optimal λ values for Boston
dataset, varying number of networks in the
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Figure 4.3: Optimal λ values for Phoneme
dataset, varying number of networks in the
ensemble
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Figure 4.4: Optimal λ values for Boston
dataset, varying complexity of networks in
the ensemble
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Using a different Fitness Function

The results reported so far have been obtained using the mean squared error in the fitness
function. The Phoneme dataset is a classification problem; as such, we are not so concerned
with the MSE, but more in the classification error rate (percentage of misclassified exam-
ples). If this is the case, we should use a different fitness function that will optimise the
error rate instead of the MSE. An experiment was performed to evolve λ using the testing
classification error rate in the fitness function; our new function is:

F (λ) =
1

1
N

∑N
n=1 L(f̄λ(xn); dn)

(4.5)

where L(f̄λ(xn); dn) returns 1 if f̄λ(xn) 6= dn, and 0 otherwise. Figures 4.6 and 4.7 show
results for this. As we increase the number of networks, there is a uniform upward trend
towards 0.9, regardless of network complexity. As we increase network complexity, there
seems to be a significant variability when using a small ensemble, but stabilizing again to
∼ 0.9 when we use a larger ensemble.
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Figure 4.6: Optimal λ values for Phoneme
dataset, varying number of networks in the
ensemble, evaluted with respect to classifi-
cation error rate
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4.2 Chapter Summary

In this chapter we applied an evolutionary algorithm to locate the optimal value of the
regularisation strength parameter λ in NC learning. We investigated this with two datasets
and under several different ensemble architectures. The aim was to characterise the optimal
value, λ∗, such that it could be predicted reliably in future situations.

What conclusions can we draw about the characteristics of λ∗? On both datasets, the
optimal value had more variability on smaller ensembles, and was more stable with larger
ensembles, regardless of which error criterion1 was used. There was no definitive pattern
observed with respect to changes in complexity of the individual networks (i.e. varying
the number of hidden nodes). After averaging over several trials, near optimal values were
located: the lowest was 0.62, and the largest 0.98. This chapter’s investigation has therefore
served to support Liu’s hypothesis that λ should be between 0 and 1; however we cannot
make definite claims from just two datasets; a larger investigation of the empirical behaviour
of NC learning is conducted in chapter 6.

A more desirable goal would be to find a mathematical framework in which to charac-
terise NC learning and the behaviour of the strength parameter, and discover why optimal
λ is affected as it is by the ensemble configuration; in the following chapter we address this.

1MSE or classification error rate



Chapter 5

Theoretical Analysis of Negative

Correlation Learning

I n this chapter we continue our study of Negative Correlation (NC) Learning, a successful
neural network ensemble learning technique developed in the evolutionary computation

literature. NC has shown a number of empirical successes and varied applications, including
regression problems [152], classification problems [94], and time-series prediction [85]. It has
consistently demonstrated significant performance improvements over a simple ensemble
system, showing very competitive results with other techniques like Mixtures of Experts and
RBF networks [86]. NC so far has had very little formal analysis to explain its successes;
this provides the motivation for our work.

Our theoretical analysis begins with a summary of the assumptions and properties of
NC as published in the original work. We show that by removing an assumption, NC can
be seen to be exploiting the well-known Ambiguity decomposition of the ensemble error,
grounding it in a statistics framework around the bias-variance decomposition. We use this
grounding to find bounds for the parameters, and provide insights into the behaviour of
the optimal parameter values. When taking into account our new understanding of the
algorithm, significant reductions in error rates were observed in empirical tests.

5.1 NC Learning: Why does it work?

It is well known that the MSE of a convex-combined ensemble can be decomposed into bias,
variance and covariance terms [141]. Liu showed empirically [85] that the strength parameter
λ in NC provides a way of controlling the trade-off between these three components. Liu
showed that a value greater than zero can encourage decreases in covariance, however also
observes that too high a value can cause a rapid increase in the variance component, causing
overall error to be higher. No theoretical explanation was given for this behavior, and as
such we do not yet have a clear picture of the exact dynamics of the algorithm.

When λ = 1, we have a special situation; the gradient of the individual network error
is directly proportional to the gradient of the ensemble error. This was described by Liu
to show a theoretical justification for NC-Learning. In order to show this, Liu calculated
the first partial derivative of the network error function with respect to the output of the
network. It should be noted that, in the calculation of the derivative, Liu has: “... made
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use of the assumption that the output of the ensemble f̄ has constant value with respect to
fi” [85, p.29]. When λ = 1, we have:

ei =
1

2
(fi − d)2 + λ(fi − f̄)

∑

j 6=i

(fj − f̄) (5.1)

∂ei

∂fi
= fi − d +

∑

j 6=i

(fj − f̄)

= fi − d− (fi − f̄)

= f̄ − d

However, although the assumption of constant f̄ is used, so too is the property that:

∑

j 6=i

(fj − f̄) = −(fi − f̄) (5.2)

This is derived from the fact that the sum of deviations around a mean is equal to zero;
obviously the sum of deviations around a constant (since Liu assumed f̄ is as such) does not
have this property, therefore (5.2) should not be used. Using this assumption (apparently
inconsistently), and with the overall ensemble error function defined as,

eens =
1

2
(f̄ − d)2 (5.3)

it was stated that:
∂eens

∂fi
=

1

M

[∂ei

∂fi

]

(5.4)

showing that the gradient of the individual network error is directly proportional to the
gradient of the ensemble error. This means all the optima are in the same locations as in
the ensemble error function, but the landscape is scaled by a factor of 1

M . Though this is
obviously a useful property, the justification for the assumption is unclear. The remainder
of this work will illustrate the benefits that can be gained from removing this assumption
that f̄ is a constant term. Before we embark on this, it would be useful to first understand
a framework into which NC can fit. Can we find a more solid theoretical grounding to NC?

5.2 Formalising NC Learning

In this section we show how NC can be related to the ambiguity decomposition [70] which
showed that the mean-square error of the ensemble estimator is guaranteed to be less than
or equal to the average mean-square error of the component estimators. They showed the
ensemble error could be broken down into two terms, one of which is dependent on the
correlations between network outputs; the exact nature of this result will be given in the
next section.

5.2.1 NC uses the Ambiguity Decomposition

Note that the penalty function is actually a sum of pairwise correlations between the ith
network output and the other network outputs:
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pi = (fi − f̄)(fj − f̄) (5.5)

+(fi − f̄)(fk − f̄)

...

+(fi − f̄)(fM − f̄)

If we remember that the MSE of an ensemble decomposes into bias plus variance plus
covariance [141], then including some measure of correlation to be minimised seems like an
intuitive thing to do, first noted by Rosen [117]. However this intuition is not enough to
fully understand NC. We note that the penalty function can be rearranged to:

pi = −(fi − f̄)2 (5.6)

which is again due to the property that the sum of deviations around a mean is equal to
zero. This rearrangement is only possible if we remove Liu’s assumption of constant f̄ . As
can be seen, each network minimises its penalty function by moving its output away from
the ensemble output, the mean response of all the other networks.

So, why should increasing distance from the mean, or optimising equation (5.1), nec-
essarily lead to a decrease in ensemble error? An examination of the proof by Krogh and
Vedelsby can answer this question, and also raise some new questions on the setting for the
λ parameter. Their work showed that the following statement about ensemble error was
true:

(fens − d)2 =
∑

i

wi(fi − d)2 −
∑

i

wi(fi − fens)
2 (5.7)

where wi is the weighting on the ith network, and d is the target. This says that the
squared error of the ensemble estimator is equal to the weighted average squared error of the
individuals, minus a term which measures average correlation. This allows for non-uniform
weights (with the constraint

∑

i wi = 1) so the general form of the ensemble output is
fens =

∑

i wifi. This result in equation (5.7) stems from a number of definitions, one of
which is the ambiguity of a single member of the ensemble:

vi = (fi − fens)
2 (5.8)

If the ensemble is uniformly weighted, we simply have:

vi = (fi − f̄)2 (5.9)

Remembering that the individual networks in NC-learning minimise the penalty func-
tion, and looking at equations (5.6) and (5.9) we can see pi = −vi and so the networks are
in fact maximising this ambiguity term, equation (5.9). This in turn of course affects the
total ensemble error.

To understand this further we take equation (5.7), multiply through by 1
2 and rearrange

slightly assuming our ensemble is uniformly weighted, we then have:

1

2
(f̄ − d)2 =

1

M

∑

i

[
1

2
(fi − d)2 − 1

2
(fi − f̄)2

]

(5.10)

We see that the MSE of an ensemble can be decomposed, with the Ambiguity Decompo-
sition, into a weighted summation, where the ith term is the backpropagation error function
plus the NC-Learning penalty function with the strength parameter set at 0.5.
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Where does NC belong among other algorithms?

In section 3.2.4 we reviewed how various researchers have exploited the Ambiguity decompo-
sition to guide their machine learning techniques; we saw that Ambiguity has been utilised
in many ways: pattern selection [70], feature selection [100], optimising the topologies [102]
of networks in the ensemble, optimising the combination function [70], and also optimising
training time [21]. We can now see that NC fits neatly into the gap as the first technique
to directly use Ambiguity for network weight updates.

5.2.2 How should we understand the Strength Parameter?

The Relation to Liu’s λ

Since we have removed the constraint of assuming constant f̄ to allow a link to the ambiguity
decomposition, it seems more rigorous to differentiate the network error again without this
assumption. What happens in this case? We introduce a strength parameter γ, in place of
λ, to indicate we perform the derivative correctly ; we calculate the partial derivative with
respect to fi as follows:

ei =
1

2
(fi − d)2 + γ(fi − f̄)

∑

j 6=i

(fj − f̄)

∂ei

∂fi
= fi − d− γ

[

2(1− 1

M
)(fi − f̄)

]

(5.11)

where M is the number of networks in the ensemble. Keeping the assumption of constant
f̄ causes this term 2(1− 1

M ) to disappear. However, it does seem sensible to retain this, as
it takes account of the number of networks. In all of the previous work on NC [85, 86, 94],
the strength parameter was thought to be problem dependent. Now we understand that it
has a deterministic component, this 2(1 − 1

M ). To avoid confusion, from this point on, we
shall refer to the λ parameter in the following context, where γ is still a problem-dependent
scaling parameter:

λ = γ

[

2(1− 1

M
)

]

= γ

[

2
M − 1

M

]

(5.12)

Defining Parameter Bounds

As with any problem-dependent parameter, we would like to know bounds on it, to allow
us to set it sensibly. Liu stated that the bounds of λ should be [0, 1], based on the following
calculation:

∂ei

∂fi
= fi − d + λ

∑

j 6=i

(fj − f̄)

= fi − d− λ(fi − f̄)

= (1− λ)(fi − d) + λ(f̄ − d)
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He states: “the value of parameter λ lies inside the range 0 ≤ λ ≤ 1 so that both (1−λ)
and λ have non-negative values” [85, p.29]. However this justification is questionable, and
again here we see the assumption of constant f̄ is violated.

We therefore have to ask, why would it be a problem if either (1−λ) or λ took negative
values? Maybe the bounds of λ should not be [0, 1]. How can we determine a more justifiable
bound? The NC penalty term ‘warps’ the error landscape of the network, making the global
minimum hopefully easier to locate. If the landscape is warped too much, it could eliminate
any useful gradient information that we can use. This state is indicated by the positive-
definiteness of the Hessian matrix (the matrix of second partial derivatives of the network
error with respect to the weights). If the Hessian matrix, evaluated at a given point, is
non-positive definite, then the error gradient consists of either a local maximum or a point
of inflexion, and we have lost any useful gradient information from our original objective
function.

It is the case that, if the Hessian matrix is positive definite, then all elements on the
leading diagonal are also positive [80]; therefore if any element on that diagonal is zero or
less, the entire matrix cannot be positive definite. Assuming we have a network with a
linear output function, then for an arbitrary diagonal element corresponding to a weight in
the output layer, we can show (derivation in appendix C) that:

∂2ei

∂w2
i

=
[

1− λ(1− 1

M
)
]

h2
j (5.13)

where h2
j is the squared output of the corresponding hidden node. If this element

becomes non-positive, the entire matrix is guaranteed to be non-positive definite; therefore
we would like the following inequality to hold:

0 <
[

1− λ(1− 1

M
)
]

h2
j

0 < h2
j − λh2

j (
M − 1

M
)

λh2
j (

M − 1

M
) < h2

j

λ <
h2

j

h2
j (

M−1
M )

λ <
M

M − 1
(5.14)

Since the effect of the hidden node cancels out, we find that this inequality is independent
of all other network parameters, so it is a constant for any ensemble architecture using linear
output nodes and a simple average combination function. This defines an upper bound for
λ and, since we know the relationship between the two strength parameters, we can also
show a bound for γ:

λupper =
M

M − 1
γupper =

M2

2(M − 1)2
(5.15)

When λ or γ is varied beyond these upper bounds, the Hessian matrix is guaranteed to be
non-positive definite. Figure 5.1 plots λupper and the equivalent γupper for different numbers
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of networks. We see that as the number of networks increases, λupper asymptotes to 1, and
γupper to 0.5. It should be noted that for less than 6 networks or so, λupper is considerably
greater than 1.0, contrary to Liu’s original bound.
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Figure 5.1: The Upper bound on γ and λ

However, it could easily be the case that the leading diagonal is positive, yet the entire
matrix is still non-positive definite. This implies that the matrix could become non-positive
definite well before our upper bound is reached; the exact situation at which this occurs is
as yet unknown. Our bound is therefore a conservative one, and it may be possible to define
a tighter bound. The question of whether a tighter bound can be defined can be phrased
as “Are there any general conditions for the off-diagonal elements of the Hessian, that will
force non-positive definiteness, in spite of all leading diagonal elements being positive?”.
This question is currently outside the scope of the thesis, but will be discussed as possible
future work in the Conclusions chapter.

Strengthening Liu’s Result

Liu showed that at λ = 1, we have the property described in equation (5.4) that the gradient
of the individual network error is directly proportional to the ensemble error. However, this
property was established under the assumption of constant f̄ . We can strengthen this result
however, by showing that it can still hold if we remove the assumption, but under a different
strength parameter value. Examining equations (5.11) and (5.1), we can see that the same
proportional relationship will hold when:

γ =
M

2(M − 1)
(5.16)

The implications of this will be further discussed in section 5.4.1.
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5.3 A Statistical Interpretation of NC

How can we interpret NC in a statistics framework? In chapter 3 we illustrated the how
Ambiguity term is related to the bias-variance-covariance decomposition of the ensemble
error. The expected value of the average individual squared error is provides the ensemble
bias component, while the expected value of the ambiguity term provides the ensemble
variance and covariance components. When training a simple ensemble, we only minimise
the errors of the individual networks, and therefore only explicitly influence the bias com-
ponent in the ensemble. However when training with NC, we use the individual error plus
the Ambiguity term as a regularisation factor. The expected value of the Ambiguity term
provides the missing second half of the ensemble error that is not included in simple ensem-
ble learning. It therefore can be seen that the reason for the success of NC is that it trains
the individual networks with error functions which more closely approximate the individual
network’s contribution to ensemble error, than that used by simple ensemble learning.

5.4 The Ensemble as a Single Estimator

We have seen that the error of ensemble system can be interpreted in two ways: firstly
with the bias-variance decomposition, and secondly with the bias-variance-covariance de-
composition. If we regard the ensemble as a single estimator in its own right, we have the
bias-variance interpretation; if we regard the ensemble as a combination of other estimators,
we have the bias-variance-covariance interpretation. In section 5.4.1 we briefly show how
NC-Learning works on a search landscape that, using the λ parameter, can be smoothly
scaled between that of a fully parallel ensemble system, and a single large neural network.
In section 5.4.2 we show that if we regard the ensemble as a single large neural network,
then the error gradient of that network can be broken into four individually understand-
able components. We then demonstrate that the error gradient of a simple ensemble, and
ensemble using NC, can be understood as different combinations of these four components.

5.4.1 Understanding the link to a Single Network

Regard the architecture in figure 5.2. This is an ensemble of three networks, each with

h

f

f

w

i

qi

q

input

Figure 5.2: A typical ensemble architecture

three hidden nodes, using a simple average combination rule for the ensemble output. We
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desire to update the weight, wqi, marked in bold—this is one of the output layer weights
for the ith network (connected to the qth hidden node). If we now consider the ensemble
architecture as one large network (with fixed output layer weights), then our output node
is marked in dark gray, and has a linear activation function:

f̄ = ai (5.17)

and its activation is defined by:

ai =
∑

i

1

M
fi (5.18)

The error of this large network on a single pattern is:

eens =
1

2
(f̄ − d)2 (5.19)

Now, as before, we find the derivative of eens with respect to the weight wqi:

∂eens

∂wqi
=

∂eens

∂f̄

∂f̄

∂ai

∂ai

∂fi

∂fi

∂ai

∂ai

∂wqi
(5.20)

∂eens

∂wqi
=
[

(f̄ − d)
]

·
[

1
]

·
[ 1

M

]

·
[

fi(1− fi)
]

·
[

hq

]

(5.21)

If we use NC-Learning, we need the derivative of the error ei with respect to wqi. This
is:

∂ei

∂wqi
=
[

(fi − d)− λ(f̄ − d)
]

·
[

fi(1− fi)
]

·
[

hq

]

(5.22)

If λ = 0, we have:
∂ei

∂wqi
=
[

(fi − d)
]

·
[

fi(1− fi)
]

·
[

hq

]

(5.23)

And if λ = 1, we have:

∂ei

∂wqi
=
[

(f̄ − d)
]

·
[

fi(1− fi)
]

·
[

hq

]

(5.24)

In this latter case, the only difference between (5.21) and (5.24) is the 1
M . All the

minima are in the same locations, but the landscape is M times shallower—the effect of
which could be duplicated with a smaller learning rate in the update rule. When we scale
λ, we scale smoothly between the gradient of a single network with a linear output function,
and that of a parallel ensemble system.

5.4.2 Understanding Components of the Ensemble Error Gradient

We have seen that NC incorporates the ambiguity term into its error function. The actual
error function we wish to decrease is the ensemble error:

eens =
1

2
(f̄ − d)2 =

1

M

∑

i

[ei] (5.25)
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which we choose to achieve by minimising ei:

ei =
1

2
(fi − d)2 − 1

2
(fi − f̄)2 (5.26)

However it can be seen that the ei terms are not independent of one another when
varying fi, simply because they all contain f̄ . So why does it work? And what is the
relationship to a single network method? To understand this we will examine the gradient
of the ensemble error function.

We can obtain the gradient by taking the first partial derivative of the functions with
respect to fi. It should be noted that we are assuming an ensemble of networks with
linear output functions. If this is the case, the error gradient we would like to minimise
is: ∂eens

∂wi
= ∂eens

∂fi

∂fi

∂wi
. The second term ∂fi

∂wi
evaluates to simply the output of the relevant

hidden node (which we assume to be sigmoid activation). The error gradient is therefore
proportional to ∂eens

∂fi
, and we can simplify our calculations below by omitting the reference

to the hidden node since it just acts as a scaling component.
We can differentiate the ensemble error in two ways. Firstly from the composite:

eens =
1

2
(f̄ − d)2

∂eens

∂fi
=

1

M
(f̄ − d)

in one simple step using the chain rule. Or we can do it from the decomposed form:

eens =
1

M

∑

i

[
1

2
(fi − d)2 − 1

2
(fi − f̄)2

]

Before we begin the calculation of the derivative, we first break this into two components,
where the first term concerns network i, and the second concerns all the other networks,
j 6= i :

eens =
1

M

[
1

2
(fi − d)2 − 1

2
(fi − f̄)2

]

+
1

M

∑

j 6=i

[
1

2
(fj − d)2 − 1

2
(fj − f̄)2

]

If this is the case, we can see:

eens =
1

M

[
1

2
(fi − d)2 − 1

2
(fi − f̄)2

]

+
1

M

[
1

2
(fj − d)2 − 1

2
(fj − f̄)2

]

+
1

M

[
1

2
(fk − d)2 − 1

2
(fk − f̄)2

]

the partial derivative of this with respect to fi is:

∂eens

∂fi
=

1

M

[

(fi − d)− (1− 1

M
)(fi − f̄)

]

+
1

M

[

0 − (0− 1

M
)(fj − f̄)

]

+
1

M

[

0 − (0− 1

M
)(fk − f̄)

]
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which is equal to:

∂eens

∂fi
=

1

M

[

(fi − d)− (1− 1

M
)(fi − f̄)

]

+
1

M

[
1

M
(fj − f̄)

]

+
1

M

[
1

M
(fk − f̄)

]

which is in turn equal to:

∂eens

∂fi
=

1

M

[

(fi − d)− (1− 1

M
)(fi − f̄)

]

+
1

M

∑

j 6=i

[
1

M
(fj − f̄)

]

(5.27)

if we multiply out the brackets in the first term:

∂eens

∂fi
=

1

M

[

(fi − d)− (fi − f̄) +
1

M
(fi − f̄)

]

+
1

M

∑

j 6=i

[
1

M
(fj − f̄)

]

Finally, multiplying through with the 1
M , we can see the error of the ensemble has four

components, shown and described in table 5.1.

Component Interpretation

1
M (fi − d) This is the component of the error gradient due to the differ-

ence between the ith network output and the desired output
(due to the fact that fi is changing.)

− 1
M (fi − f̄) This is the component of the error gradient due to the differ-

ence between fi and f̄ (due to the fact that fi is changing.)

1
M2 (fi − f̄) This is the component of the error gradient due to the differ-

ence between fi and f̄ (due to the fact that f̄ changes, because
fi is changing.)

1
M2

∑

j 6=i(fj − f̄) This is the component of the error gradient due to the differ-
ences between the fjs and f̄ (due to the fact that f̄ changes,
because fi is changing.)

Table 5.1: Ensemble gradient components

Each of these components contributes to the error of the ensemble estimator f̄ , as defined
in equation 5.25. If we take the 1

M on the outside and label the components, we can make
an interesting observation.

∂eens

∂fi
= 1

M

[

(fi − d)
︸ ︷︷ ︸

− (fi − f̄)
︸ ︷︷ ︸

+
1

M
(fi − f̄)

︸ ︷︷ ︸

+
1

M

∑

j 6=i

(fj − f̄)

︸ ︷︷ ︸

]

A B C D
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When using a simple ensemble, the error gradient for a single network fi is:

∂

∂fi

[1

2
(fi − d)2

]

= (fi − d) (5.28)

Looking at equation 5.4.2, we can see this is component A. The error gradient for fi in
an ensemble using NC is:

∂

∂fi

[1

2
(fi − d)2 − γ(fi − f̄)2

]

= (fi − d)− 2γ(1− 1

M
)(fi − f̄) (5.29)

= (fi − d)− 2γ
[

(fi − f̄)− 1

M
(fi − f̄)

]

= A− 2γ(B − C)

alternatively, because we know λ = 2γ(1− 1
M ), this can also be expressed as A− λB.

From all this we can understand the relationships between minimising the simple en-
semble error, the NC ensemble error, and a single network, described in table 5.2.

Algorithm Components in error gradient for net-
work i

Simple Ensemble A

Ensemble with NC A− 2γ(B − C) or (A− λB)

Ensemble with NC, λ = 1 A−B

or equivalently γ = M
2(M−1)

Single large network 1
M (A−B)

(with fixed output layer weights)

Table 5.2: Components

As an illustration of the way these components interact when we use NC, consider the
scenario in figure 5.3.

f f id

3 4 5 6 7 8

Figure 5.3: Number line

On a single datapoint, the network fi is estimating too high at 8.0, which is right of
the target d = 4. We have an ensemble of M = 5 networks, but for clarity the outputs
of the other ensemble members are not shown; the resulting ensemble output is f̄ = 3,
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too low, left of the target. When updating the value of fi, a simple ensemble will use the
gradient measurement (fi − d) = 4, resulting in fi being shifted left, towards the target.
However, this will cause the ensemble output f̄ to shift left, moving away from the target.
An ensemble using NC will include three gradient components:

A− 2γ(B − C) = (fi − d)− 2γ
[

(fi − f̄)− 1

M
(fi − f̄)

]

(5.30)

= 4− 2γ(5− 1

5
5)

= 4− γ8

If we choose γ = 0.3, this sum evaluates to 1.6, still a positive gradient for fi, meaning
the ensemble output will still be moved away from the target. If however we choose γ = 0.7,
it evaluates to −1.6, giving a pressure for the network fi to move away from the target,
causing the ensemble output to move closer to the target. The setting of the γ value
provides a way of finding a trade-off between these gradient components that will cause the
ensemble output f̄ to move toward the target value d.

5.4.3 Understanding a 2-Network Search Landscape

Figure 5.6 shows the error functions for a 2-network ensemble as we vary the strength
parameter. This shows that larger strength parameters force a wider basin of attraction;
with γ = 0, there is only one minimum, when both networks are at the target; when γ = 0.5,
the basin is infinitely wide and the networks can settle anywhere along the ravine created
and still fit the datapoint. Although we cannot visualise higher dimensions than this, it
implies that NC functions by widening the basins of attraction, allowing flexibility for other
datapoints.
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Figure 5.4: The joint error function for a two-network ensemble, λ = 0
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Figure 5.5: The joint error function for a two-network ensemble, λ = 0.5
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Figure 5.6: The joint error function for a two-network ensemble, λ = 1
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5.5 An Empirical Study

5.5.1 The Bounds of the λ and γ Parameters

With our new understanding of the grounding behind NC, we now perform an empirical
evaluation, and show that it is critical to consider values for the strength parameter outside
the originally specified range.

Table 5.3 shows the classification error rates of two empirical tests, on the Wisconsin
breast cancer dataset from the UCI repository (699 patterns), and the Heart disease dataset
from Statlog (270 patterns). An ensemble consisting of two networks, each with five hidden
nodes, was trained using NC. We use 5-fold cross-validation, and 40 trials from uniform
random weights in [−0.5, 0.5] for each setup; in total 200 trials were conducted for each
experimental configuration. It should be noted that with 2 networks, γ = λ. The λ values
tested are those considered in the original work on NC: 0.0, 0.5 and 1.0. When λ was
set appropriately, results on the heart data showed NC significantly better than a simple
ensemble (equivalent to λ = 0) at α = 0.05 on a two-tailed t-test. On the breast cancer
data, although the mean was lower, it was not statistically significant.

Table 5.3: Mean classification error rates (200 trials) using NC on two UCI datasets

λ = 0 λ = 0.5 λ = 1
Breast cancer 0.0408 0.0410 0.0383

Heart disease 0.2022 0.1995 0.1802

Figures 5.7 and 5.8 show the results of repeating our experiments, but illustrating the
full range of the strength parameter. Mean error rate over the 200 trials is plotted, and
95% confidence intervals shown. We see that performance on the breast cancer data can be
improved significantly by considering the upper bounds beyond those previously specified;
on the heart disease data, stable performance is observed beyond λ = 1.

As a further measure of comparison, we calculated the percentage reduction in the mean
error rate, in relation to when λ = 0. On the breast cancer data, using λ = 1 gave a 1%
reduction, but using the optimum value at λ = 1.7 gave a 3% reduction.

We have shown a significant performance improvement by reconsidering the bounds of
the strength parameters. It should be noted that, even though the theoretical upper bound
is known, in practise it seems error can rise rapidly long before this bound is reached. On
the breast cancer data, error became uncontrollable beyond λ = 1.8, and on the heart
disease data at λ = 1.45; it remains to be seen if it is possible to empirically characterise
when this rapid increase will occur.

5.5.2 Single Estimator or Ensemble?

We have seen how NC Learning can be compared to a single estimator. When λ = 1 the
only difference between an ensemble and a single large neural network is that the ensemble
combination weights are not updated—they are fixed at 1

M . For completeness of this inves-
tigation, in this section we train an ensemble with NC (λ = 1) and allow the combination
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Figure 5.7: Breast cancer dataset, 2 networks, 5 hidden nodes each
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Figure 5.8: Heart disease dataset, 2 networks, 5 hidden nodes each

weights to be updated also—effectively learning with a single non-fully connected neural
network, with a linear output node. The update equation for the combination weight wi is:

∆wi = −α(
∑

j

(wjfj)− d)fi (5.31)

Figures 5.9 to 5.11 show error rates on the Breast cancer dataset. We used 5-fold cross
validation, and 20 trials of random weights for each fold, training for 2000 iterations. The
ensembles were trained using NC, with λ = 1. For the results labelled “Monolithic”, the
weights in the output layer of the ensemble were allowed to be updated as well, making the
estimator one large neural network. The results labelled “Non-monolithic” are standard
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NC learning. Figure 5.9 shows results for ensembles using networks with 2 hidden nodes
each, figure 5.10 shows results with 5 hidden nodes per network, and figure 5.11 shows the
same for 10 hidden nodes.

All results indicate that the modification to train the ensemble as a single estimator
makes no significant difference to error rates; as we know from experiments in the previous
section, a λ value other than 1.0 can make significant improvements to error rates. We
noted at the end of section 5.4.1 that NC allows a smooth transition of the error gradients
between that of a fully parallel ensemble system and a single estimator. Based on this
and our empirical observations in this section, we conclude that NC succeeds because it
allows us to choose the optimum blend between training an ensemble and training a single
estimator.
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Figure 5.9: Error rates for ensembles of networks with 2 hidden nodes, using NC (λ = 1)

Figure 5.10: Error rates for ensembles of networks with 5 hidden nodes, using NC (λ = 1)

Figure 5.11: Error rates for ensembles of networks with 10 hidden nodes, using NC (λ = 1)
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5.6 Chapter Summary

In this chapter we provided a thorough critique of Negative Correlation (NC) Learning
[85], a technique that extended from [117], and developed in the evolutionary computation
literature. We showed a link to the Ambiguity decomposition [70], and explained the success
of NC in terms of the bias-variance-covariance decomposition [141]. This formalisation
allowed us to define bounds on the parameters and understand how it relates to other
algorithms. When taking into account our new understanding of the parameters, significant
reductions in error were observed in empirical tests.

We then engaged in a detailed study of the error gradient and how it changes when using
NC learning. We showed that the error of an NC learning ensemble can be broken down
into four components, each with its own interpretation with respect to the current state of
the ensemble. Further to this we noted at the end of section 5.4.1 that NC allows a smooth
transition of the error gradients between that of a fully parallel ensemble system and a
single estimator. Based on this and our empirical observations in this section, we conclude
that NC succeeds because it allows us to choose the optimum blend between training an
ensemble and training a single estimator.

This theoretical chapter has served to illustrate how NC is not merely a heuristic tech-
nique, but fundamentally tied to the dynamics of training an ensemble system with the
mean squared error function. The observations we made are in fact all properties of the
mean squared error function. NC is therefore best viewed as a framework rather than an
algorithm itself. In summary the observations we have made in this chapter are not specific
to any type of predictor, but general to any predictor that can minimise a quadratic loss
function.

We know from figure 5.1 that the upper bound reduces as we add more networks; from
this it is reasonable to infer that the optimal value may follow a similar trend. In the
following chapter we gather empirical evidence to support some of the theoretical claims
made in this chapter, including an analysis of how the optimal strength parameter γ∗

changes as we alter the ensemble architecture and dataset.



Chapter 6

Empirical Analysis of Negative

Correlation Learning

I n this chapter we perform a number of experiments, to determine how the NC algorithm
behaves in different circumstances. Our question to be answered is “can the optimal

value of γ be characterised in any way?”. To answer this we observe the behaviour as we
vary (1)the dataset used, (2)the number of networks in the ensemble, (3)the number of
hidden nodes per network,and (4)the amount of noise in the training data. This chapter
also serves to support the theoretical findings in chapter 5 regarding the bounds of the
strength parameter.

6.1 Datasets

In order to gain a fair appreciation of algorithm performance, we employ a number of
different datasets to test on. We use three regression problems and three classification
problems, including the Boston and Phoneme datasets as described in section 4.1. We
use sigmoid activation functions for the hidden units of each network. For the regression
datasets, we use networks with a single output node with a linear activation function; for
the classification datasets, the single output node is sigmoid activation. In all cases, we use
the simple average combination rule for the ensemble, which for the classification problems
is thresholded at 0.5 to provide a binary value.

6.1.1 Classification Problems

Skin

This is a dataset produced by the author and colleagues; the problem is to predict whether
a particular pixel in a real-world image is human skin or not. The data was generated
by asking volunteers to select pixels corresponding to skin and not skin, from a variety of
real-world images, and recording the image information at those pixels. The data has 4500
examples (each corresponding to one pixel in an image), with 6 continuous valued inputs
and 1 binary output. For a given pixel, the first three input variables are the red, green and
blue values at that point, rescaled to [0, 1]. The last three input variables were generated by
calculating the sample variance of a 3x3, 5x5 and 7x7 window around the pixel. Networks

71
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were trained for 500 iterations. We divided the dataset into 5 equal sized portions; we
trained on one fifth of the data (900 examples), then tested on the remaining four fifths
(3600 examples). This was repeated 5 times so each portion was used in turn as training
data. Each time, the ensemble was evaluated from 40 trials of random weights, giving a
total of 200 trials for each experiment.

Breast cancer

This is the Wisconsin Breast Cancer data from the UCI Machine Learning Depository [11];
the problem is to distinguish malignant (cancerous) from benign (non-cancerous) examples.
The data has 699 examples, 458 benign and 241 malignant. Each example has 9 integer
inputs and 1 binary output. All input values were linearly rescaled to the range [0, 1].
Networks were trained for 2000 iterations, following Yao and Liu [154]. We used 5-fold
cross-validation, with each fold being evaluated from 40 trials of random weights, giving a
total of 200 trials for each experiment.

6.1.2 Regression Problems

Jacobs’ Dataset

This data, used in [56] and [85], was generated by the function:

h(x) =
1

13

[

10sin(πx1x2) + 20

(

x3 −
1

2

)2

+ 10x4 + 5x5

]

− 1 (6.1)

where x = [x1, .., x5] is an input vector whose components are drawn uniformly at random
from [0, 1]. The output of the function, h(x), is in the range [−1, 1]. We used a training
set of size 500, and a testing set of size 1000. For the training data only, Gaussian random
noise with zero mean and σ2 = 0.2 was added to the outputs. This dataset is therefore
referred to as Jacobs(0.2). We generated 5 separate training sets, but only 1 testing set.
Networks were trained for 500 iterations on a training set and evaluated on the testing set,
each time from 40 trials of random weights, giving a total of 200 trials for each experiment.

Friedman#1

This data, first used in [59] was generated by the function:

h(x) = 10sin(πx1x2) + 20

(

x3 −
1

2

)2

+ 10x4 + 5x5 (6.2)

where x = [x1, .., x10] is an input vector whose components are drawn uniformly at random
from [0, 1]. Totally there are 10 continuous valued attributes, but only the first 5 are used in
the function, leaving the last 5 as irrelevant characteristics that the algorithm has to learn
to ignore. It can be seen that Jacobs’ Dataset, described above, is a shifted and rescaled
version of this function. However, since Friedman has a larger range, a very high degree of
noise and several irrelevant attributes, it is a notably different problem. We used a training
set of size 200, and a testing set of size 1000. For the training data only, Gaussian random
noise with zero mean and σ2 = 1.0 was added to the outputs. We generated 5 separate
training sets, but only 1 testing set. Networks were trained for 1000 iterations on a training
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set and evaluated on the testing set, each time from 40 trials of random weights, giving a
total of 200 trials for each experiment.

6.2 How is γ∗ affected by the Number of Networks?

We identified in chapter 3 that the number of networks, M , in the ensemble plays a key role
in determining the performance of NC; this M term is an intrinsic part of the theoretical
upper bound (see section 5.2.2). In this section we would like to understand how M affects
performance, with the goal of characterising where the optimal value of γ occurs in different
circumstances.

Figures 6.1 to 6.6 show how error changes with γ and M . For clarity of presentation, in
all cases, the γ parameter is plotted for the range 0 to 1, but it should be remembered as
demonstrated in the previous chapter, the useful range can sometimes be greater than 1.
Experiments are performed according to the methodology described in section 6.1. We used
networks with 6 hidden nodes throughout, and plotted the testing error for ensembles of 1,
2, 4, 8, 12 and 16 networks. It should be noted that for the regression problems we plotted
the mean-squared error, whereas for the classification problems we have a different statistic
of interest—the classification error rate (percentage of misclassified examples). This point
is important as it has consequences for the theoretical upper bound we introduced in the
last chapter.

Through figures 6.1 to 6.6, we can see an easily identifiable trend, present in five out of
the six datasets used: increasing γ causes a virtually monotone decrease in error, up to a
particular “threshold” point, beyond which a rapid rise in error is observed; on closer exam-
ination it was revealed that at this point the network weights had diverged to excessively
large values. Figure 6.2 stands out as the only dataset not to exhibit this neat trend. We
repeated this experiment on the Jacobs dataset with simpler networks, each with 2 hidden
nodes; figure 6.7 shows this result, and demonstrates the trend we expected, of a steady
decrease followed by a rapid increase. It appears that when the networks are relatively
complex for the task1, the behaviour of the γ parameter becomes unpredictable, and no
significant gain can be seen for using NC. However, as can be seen by comparing figure 6.2
with figure 6.7, using the simpler networks in conjunction with NC allows us to equal the
performance of the more complex networks; at γ∗ there is no statistically significant differ-
ence (two tailed t-test, α = 0.05) between using 2 and 6 hidden nodes, for an ensemble size
of 4 or more. This behaviour is further examined in section 6.4 when we see how γ∗ changes
with noisy data.

It is interesting to note that γ∗ occurs for all datasets just before this rapid increase.
Figure 6.8 plots γ∗ for ensembles of networks with 6 hidden nodes as we increase M , the
number of networks. We have also superimposed the theoretical upper bound calculated
in the previous chapter as a bold dashed line. An obvious discrepancy can be seen in this
graph, concerning the Breast Cancer dataset.

1It appears 6 hidden nodes is more than enough to solve the Jacobs dataset.



CHAPTER 6. EMPIRICAL ANALYSIS OF NC LEARNING 74

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

3

4

5

6

7

8

9

10

Gamma value

T
es

tin
g 

M
S

E
1 net
2 nets
4 nets
8 nets
12 nets
16 nets

Figure 6.1: Friedman, 6 hidden nodes
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Figure 6.2: Jacobs(0.2), 6 hidden nodes
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Figure 6.3: Boston, 6 hidden nodes
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Figure 6.4: Phoneme, 6 hidden nodes
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Figure 6.5: Breast Cancer, 6 hidden nodes
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Figure 6.6: Skin, 6 hidden nodes
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Figure 6.7: Jacobs(0.2) Dataset: MSE vs γ, ensembles of networks with 2 hidden units
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Figure 6.8: γ∗ for ensembles of networks with 6 hidden nodes (also shows theoretical γupper)
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Figure 6.9: γ∗ for ensembles of networks with 2 hidden nodes (also shows theoretical γupper)
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It seems from figure 6.8, that the optimal values for M ≥ 4 on the Breast Cancer
dataset occur above the theoretical upper bound. On closer examination, it was found
that the error at these supposedly optimal γ values was not statistically significantly lower
than at γ = 0.0. In spite of these significance results, this serves to highlight a limitation
of the upper bound we previously defined. The bound was defined by calculating second
derivatives of the MSE error function, and seeing when the Hessian matrix was forced to
non-positive definiteness. The loss function of interest in classification problems is zero-one
loss, and as such it is non-differentiable and our calculations with the second derivative do
not apply. If however we plot the MSE for this dataset, shown in figure 6.10, we see that
it still behaves according to our upper bound. In figure 6.11, we show γ∗ approaching 0.5
(and equivalently λ∗ goes to 1.0) with increasing M .
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Figure 6.10: Breast Cancer: MSE vs γ, en-
sembles of networks with 6 hidden units.
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Figure 6.11: Optimal γ with respect to
MSE; illustrating that although error rate
does not follow the theoretical upper bound,
the MSE does.

Our theory work (section 5.2.2) shows that the upper bound will go to 0.5, and as we
discussed in the summary of chapter 5, it is reasonable to hypothesize that the optimum
value, γ∗, may well also follow the same trend. The trend in figure 6.8 seems mostly to
support this hypothesis, except that in some situations the Phoneme, Jacobs and Friedman
datasets show γ∗ < 0.5. On closer examination it was found that on these datasets, when γ∗

was found to be less than 0.5, the error was not statistically significantly lower (two-tailed
t-test, α = 0.05) than at γ = 0.5. Figure 6.9 plots the same information but for networks
each with 2 hidden nodes, which shows no optimal values below 0.5. We conclude therefore
that significant improvements are likely to occur with relatively simple networks at γ = 0.5;
but, with more complex networks, the individuals are powerful enough to solve the problem
configured as a simple ensemble, and NC can show no viable benefits when used. Therefore,
this graph agrees with the hypothesis we proposed at the end of chapter 5, that since the
upper bound decreases toward γ = 0.5, so should the optimal value.

But why does γ∗ approach 0.5 as we add networks? To answer this question we refer
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back to the decomposition of the ensemble error into a weighted summation of components:

1

2
(f̄ − d)2 =

1

M

∑

i

[
1

2
(fi − d)2 − 1

2
(fi − f̄)2

]

(6.3)

The ith component, corresponding to the error contribution of the ith network, is:

1

2
(fi − d)2 − 1

2
(fi − f̄)2 (6.4)

If we use a simple ensemble, we minimize 1
2(fi − d)2 for each network i. Doing so

however makes the assumption that the error contribution of each network is independent
of the others; this is clearly false. Since changing fi will cause f̄ to also change, and f̄ is
present in the error contribution of all networks, then changing the output of any network i

will have consequences for the other network errors. If we have a larger ensemble though, the
influence of fi on f̄ becomes less and less, effectively making f̄ independent. At this point
we can minimize each error contribution as though they are independent of one another—so
the optimum error function is simply the contribution itself, as in equation (6.4), which is
equal to the NC error function with γ = 0.5.

How much gain can NC with γ∗ provide?

Figures 6.12 to 6.17 illustrate the gain that can be achieved at γ∗ compared to simple
ensemble learning (γ = 0.0). The Friedman, Boston and Phoneme datasets (figures 6.12,
6.14 and 6.15) all show a general trend that NC shows more benefits when used on larger
ensembles. The Jacobs dataset (figure 6.13) shows a trend of increasing gain with larger M ,
up to a point, followed by a decrease in gain, indicating that the larger ensembles using NC
(from 8 networks onwards) are overfitting the data. The Skin dataset (figure 6.17) shows
larger gains for M ≥ 4 than at M = 2; the largest gain is shown at M = 16. It seems in
general, the benefits of NC are shown best with a large number of simple networks, except
where the ensembles begin to overfit the data; this hypothesis is also supported by similar
results in our previous experiments [18]. A notable exception to this is the Breast Cancer
dataset, to which we will now devote special attention.

Results for the Breast Cancer dataset, in figure 6.16, shows a very large drop in error
for the M = 2 network ensemble, followed by an increase for M ≥ 4, and then no further
significant gains with larger ensembles. This error rate for M = 2 is not equalled by any
ensemble of any structure, including larger networks and larger ensembles. How can this be?
To answer this question we used ROC (Receiver Operator Characteristics) Analysis [158].
This type of analysis is widely used in medical diagnosis, and is based on the fact that certain
information is hidden by assessing our estimator with a single measure (the error rate). It
provides us with two measures: sensitivity and specificity. Sensitivity can be understood as
the likelihood of correctly identifying a cancerous case when presented with one. Specificity
is the likelihood of correctly identifying a non-cancerous case when presented with one. For
a single pattern, we have a target value and a corresponding response from the predictor;
in our case the predictor is the ensemble. Our target value is either class ‘positive’ or class
‘negative’. Dependent on these values, the predictor’s response to each pattern is labelled
as one of four possible outcomes:
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Figure 6.12: Friedman, 6 hidden nodes
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Figure 6.13: Jacobs(0.2), 6 hidden nodes
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Figure 6.14: Boston, 6 hidden nodes
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Figure 6.15: Phoneme, 6 hidden nodes
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Figure 6.16: Breast Cancer, 6 hidden nodes
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Figure 6.17: Skin, 6 hidden nodes
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True Positive The predictor said ‘positive’, and was correct.

True Negative The predictor said ‘negative’, and was correct.

False Positive The predictor said ‘positive’, and was incorrect.

False Negative The predictor said ‘negative’, and was incorrect.

Now sum over the testing set the number of occurrences of each of these. The number
of true positives is TP , the number of false negatives is FP , and the others are similarly
defined. The formulae defining our statistics for ROC analysis are:

Sensitivity =
TP

TP + FN
Specificity =

TN

TN + FP

Figures 6.18 and 6.19 plot sensitivity and specificity for ensembles on the Breast Cancer
dataset, as we change the γ strength parameter.
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Figure 6.18: ROC analysis on Breast cancer dataset: ensemble of 2 networks, optimum γ

minimising the error rate is at γ = 1.5

The optimum γ value (in the sense of reducing error rate) for 2 networks was γ∗ = 1.5,
and for 6 networks was γ∗ = 0.95. For 2 networks, the error rate was very low at 0.029,
but at γ∗ = 1.5 in figure 6.18 we see a large drop in sensitivity in comparison to other
γ values—a sensitivity of 95.5% and specificity of 97.9%. For 6 networks, the error rate
is higher at 0.033, however we see in figure 6.19 that sensitivity is kept relatively high at
97.2%, and specificity at 96.5%. The high specificity of the two-network ensemble counted
for more in reducing the error rate, since there were almost twice as many non-cancerous
patients (458) as there were cancerous patients (241).
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Figure 6.19: ROC analysis on Breast cancer dataset: ensemble of 6 networks, optimum γ

minimising the error rate is at γ = 0.9

In conclusion to this question, although the two-network ensemble achieved significantly
higher accuracy, it did so by sacrificing sensitivity for specificity. In effect the ensemble
started ignoring the cancerous patients because it could gain accuracy more easily by iden-
tifying the more numerous non-cancerous patients.

6.3 How is γ∗ affected by Individual Network Complexity?

How does the optimal value of γ change with the individual complexity of the networks
in the ensemble? Using the same datasets and methodology as in the previous section, we
chose to use an ensemble of 6 networks, and varied the number of hidden nodes per network
from 2 to 12. Figures 6.20 to 6.25 show this for different datasets, again plotting either
MSE or error rate depending on the problem.

As a summary of these graphs, the optimal value of γ in each situation is plotted in
figure 6.26. The upper bound for M = 6 networks is γupper = M2

2(M−1)2
= 0.72. We note

that the Breast Cancer dataset has γ∗ ≈ 0.9, above the upper bound, but again these
improvements are in terms of error rates, and again were not a significant improvement
over γ = 0.0. It is interesting to note that for any given dataset, the optimal value is almost
invariant with increasing complexity of the individual networks.

How much gain can NC with γ∗ provide?

Figures 6.27 to 6.32 illustrate the gain that can be achieved at γ∗ compared to γ = 0.0
(simple ensemble learning). On the first four datasets (Friedman, Jacobs, Boston, Phoneme)
it can be seen that the gap between simple ensemble learning and NC with γ∗ becomes
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Figure 6.20: Friedman, 6 networks
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Figure 6.21: Jacobs(0.2), 6 networks

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.025

0.03

0.035

0.04

T
es

tin
g 

M
S

E

Gamma value

2 hids
4 hids
6 hids
8 hids
10 hids
12 hids

Figure 6.22: Boston, 6 networks
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Figure 6.23: Phoneme, 6 networks
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Figure 6.24: Breast Cancer, 6 networks
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Figure 6.25: Skin, 6 networks



CHAPTER 6. EMPIRICAL ANALYSIS OF NC LEARNING 83

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Hidden units per network

O
pt

im
al

 G
am

m
a 

va
lu

e

Breast
Skin
Jordan
Boston
Phoneme
Friedman

Figure 6.26: γ∗ for ensembles of 6 networks

smaller and smaller as we add more hidden nodes. On the last two datasets (Breast cancer,
Skin) we see no significant change in the gain achieved as we increase network complexity.

We previously found that adding more networks made NC more effective; the results
in this section indicate that NC becomes less effective or at least no more effective as the
individual network complexity increases. It seems that when the individual networks are
relatively powerful themselves, NC can provide little further gain. This hypothesis agrees
with our earlier observations in section 6.2 on the optimal γ parameter for the Jacobs
dataset, and its effect with respect to complex and simple networks. From this we infer
that NC seems to require weak learners; this point is discussed further in section 6.6.

6.4 How is γ∗ affected by Noisy Data?

The original Jacobs dataset (as described in section 6.1) had Gaussian noise with variance
0.2 added to the training data. Here we created four new datasets, with noise variance 0.0,
0.1, 0.2, and 0.3 respectively; we refer to the variance 0.0 dataset as “no noise”, and the
variance 0.3 set as “high noise”. Figure 6.33 shows the MSE of an ensemble of 8 networks
each with 6 hidden nodes, as we vary the γ parameter; we show the four datasets as four
different lines on this graph. A statistically significant improvement (two tailed t-test,
α = 0.05) was observed at γ∗ for the no noise and two medium noise datasets, but for
the high noise the effect of the γ value became unpredictable and no improvement over a
simple ensemble could be found. The AdaBoost algorithm is well known to respond badly
to noise—it therefore would be interesting to conduct a comparison of NC and AdaBoost,
with various noisy datasets.
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Figure 6.27: Friedman, 6 networks
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Figure 6.28: Jacobs(0.2), 6 networks
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Figure 6.29: Boston, 6 networks
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Figure 6.30: Phoneme, 6 networks
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Figure 6.31: Breast Cancer, 6 networks
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Figure 6.32: Skin, 6 networks
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Figure 6.33: MSE vs γ as we increase training data noise on the Jacobs dataset

6.5 How does NC compare to other Algorithms?

In the literature to date, NC has only been compared to Mixture of Experts and simple
ensemble learning [85]. It would be desirable to have a large scale empirical comparison
of NC against several other ensemble techniques and on several different domains; however
this is outside the scope of this thesis. In this section we provide the first comparison of NC
against two of the most popular ensemble techniques: AdaBoost, and Bagging. This simply
demonstrates that NC can provide competitive performance to other popular algorithms
and is worthy of further empirical study.

We use ensembles of networks each with 6 hidden nodes, and evaluate performance of
Bagging (as in figure 2.3), AdaBoost (as in figure 2.4), and NC learning on the three clas-
sification datasets we used earlier in this chapter: Breast Cancer, Skin, and Phoneme. All
experimental methodology follows that described in section 6.1; the Bagged and AdaBoosted
networks are trained for the same number of iterations as NC.

Results are shown in figures 6.34 to 6.36. NC significantly outperforms both Bagging
and AdaBoost on Phoneme, and outperforms Adaboost on the Breast Cancer, though is
not significantly better than Bagging on Breast Cancer. On the Skin dataset, the story is
very different, with NC coming in last place, regardless of how many networks are present,
while AdaBoost beats both NC and Bagging.

It is well known that the AdaBoost algorithm requires ‘weak’ learners to show an im-
provement over a single learning machine [148]. We noted that NC seems to display the
same trend, only showing benefits when using relatively small networks. We repeated the
algorithm comparisons, but using simpler networks, each with 2 hidden nodes. We expect
AdaBoost to show improved performance, and hypothesize NC may do the same. Results
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are shown in figures 6.37 to 6.39. No noticable changes in relative performances are ob-
served for the Skin or Breast Cancer sets. For the Phoneme set however, AdaBoost shows
a very large improvement, eventually equalling NC’s performance at 16 networks.
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Figure 6.34: Phoneme dataset, 6 hidden nodes per network
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Figure 6.35: Skin dataset, 6 hidden nodes per network
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Figure 6.36: Breast Cancer dataset, 6 hidden nodes per network
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Figure 6.37: Phoneme dataset, 2 hidden nodes per network
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Figure 6.38: Skin dataset, 2 hidden nodes per network
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Figure 6.39: Breast Cancer dataset, 2 hidden nodes per network
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6.6 Chapter Summary

In this chapter we attempted to answer two questions: (1) can we provide solid evidence
to support the theoretical upper bound on γ?, and (2) how can the optimal value of γ be
characterised and made predictable? We approached these by systematically varying both
ensemble size and individual network complexity over a number of problems.

The upper bound on γ was determined analytically in the previous chapter; to validate
this we exhaustively searched the range of possible γ values to locate the optimum, at
a resolution of 0.05, for several problems and ensemble architectures. Results from all
experiments supported the predicted bound, with error becoming wildly out of control
when the bound was exceeded. In addition, it seems that γ∗, never occurs below 0.5, or at
least no lower γ value is significantly better than 0.5. Therefore from the empirical work
here we suggest that a lower bound on the γ parameter should be 0.5. As we add networks
to the ensemble, the range necessary to explore to find γ∗ becomes smaller and smaller,
and eventually at around 10-15 networks (on average) it seems best to simply set γ = 0.5
immediately. In other situations, with smaller ensembles, we suggest that a good strategy
for locating γ∗ is to start with γ = 0.5 and search upwards. The variability in the results
we have seen indicate a step-size of 0.05 should be sufficient to locate the optimum.

It seems that the optimal value of γ is determined almost entirely by how many networks
are in the ensemble, and to a far lesser extent by how complex the individual networks
are. It was however observed in several situations that very complex networks capable of
solving the task themselves could not gain a lot from using NC, and the optimum γ was
quite unpredictable. The same situation, where the behaviour of γ became unpredictable,
occurred when large amounts of noise were added to the data. In summary, better relative
performance gains (in comparison to a simple ensemble) were observed when using larger
ensembles made up of simpler networks.

In addition to these questions, we presented the first known experiments comparing NC
learning to the two most popular ensemble methods, Boosting and Bagging. Experiments
show that NC is a competitive technique, significantly outperforming Boosting and Bagging
on 2 out of the 3 datasets we used.

This marks the end of our investigations to date concerning Negative Correlation Learn-
ing. In the following chapter we will conclude the thesis and discuss the findings and their
implications.



Chapter 7

Conclusions and Future Work

T he primary question which this thesis has answered is “Why and how does Negative
Correlation Learning succeed as an ensemble method?”. This is an important question

to answer for two reasons. The first is from the viewpoint of NC as a learning technique in
its own right—NC has seen a number of empirical successes (including those in chapter 6)
and anything that helps us set its parameters or understand its behaviour is useful. The
second is from the viewpoint of understanding how the findings in this thesis contribute
toward understanding the concept of classification error “diversity” and how to enforce it.
We will now discuss each of these in turn and answer the thesis questions as originally stated
in the Introduction chapter.

7.1 What have we learnt...

7.1.1 About Negative Correlation Learning?

Our first objective in studying NC learning was to characterise the optimal value of the
regularisation strength parameter, λ∗, such that it could be predicted reliably in future
situations. In chapter 4 we applied an evolutionary algorithm to locate the optimal value
in different situations. We investigated this with two datasets and under several different
ensemble architectures. We noted that in general the optimal value had more variability
on small ensembles, and was more stable with larger ensembles; we could not identify any
definite pattern with respect to changes in the complexity of the individual networks.

Following from this, in chapter 5 we presented our main contribution: a thorough cri-
tique of Negative Correlation Learning. We showed a link to the Ambiguity decomposi-
tion [70], and explained the success of NC in terms of the bias-variance-covariance decom-
position [141]. This formalisation allowed us to define an upper bound on the strength
parameter (see section 5.2.2) and understand how NC relates to other algorithms. When
taking into account our new understanding of the parameters, significant reductions in error
were observed in empirical tests.

We then engaged in a detailed study of the error gradient and how it changes when
using NC learning. We showed that the error of an NC learning ensemble can be broken
down into four components, each with its own interpretation with respect to the current
state of the ensemble. Further to this we noted at the end of section 5.4.1 that NC allows
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a smooth transition of the error gradients between that of a fully parallel ensemble system
and a single estimator.

Thesis Question 1

The work in the thesis up to this point enabled us to answer our primary thesis question:
Why and how does NC learning succeed as an ensemble method?. The reason for the success
of NC is that it trains the individual networks with error functions which more closely
approximate the individual network’s contribution to overall ensemble error, than that
used by simple ensemble learning. It achieves this by using the Ambiguity term [70] as a
regularisation factor. The expected value of the Ambiguity term provides the missing second
half of the ensemble error, that simple ensemble learning does not include (see chapter 5).
As an additional observation, after our studies of the error gradient, we also concluded
that NC succeeds because it allows us to choose the optimum blend between training an
ensemble and training a single estimator.

The theoretical chapter served to illustrate how NC is not merely a heuristic technique as
originally thought, but fundamentally tied to the dynamics of training an ensemble system
with the mean squared error function. The observations we made are in fact all properties
of the mean squared error function. NC is therefore best viewed as a framework rather than
an algorithm itself. In summary, the observations we made in chapter 5 are not specific
to any type of predictor, but general to any predictor that can minimise a quadratic loss
function. As a consequence of this we could imagine any other type of machine learning
device that could make use of the NC framework. McKay and Abbass [95], though they
used NC in its original form with the λ parameter, recognised this also, and applied Genetic
Programming as the machine learning method. It would be interesting to see how well the
NC framework applies in ensembles of other estimator types, such as RBF networks or even
just simple polynomial functions.

Thesis Question 2

In chapter 6 we attempted to answer two questions: (1) can we provide solid evidence to
support the theoretical upper bound on γ?, and (2) how can the optimal value of γ be
characterised and made predictable? We approached these by systematically varying both
ensemble size and individual network complexity over a number of problems.

Here we addressed our second thesis question: How can we provide guidance for setting
λ in the NC learning algorithm?. From our theoretical studies we realised that part of the λ

parameter can be determined analytically (see section 5.2.2), and also an upper bound can
be placed on it. Results from our empirical studies in chapter 6 continued to support the
predicted upper bound for γ, with error becoming wildly out of control when the bound was
exceeded. In addition, it seems that γ∗, never occurs below 0.5, or at least no lower γ value
is significantly better than 0.5. Therefore from the empirical work here we suggested that
a lower bound on the γ parameter should be 0.5. As we add networks to the ensemble, the
range necessary to explore to find γ∗ becomes smaller and smaller, and eventually at around
10-15 networks (on average) it seems best to simply set γ = 0.5 immediately. However, we
also showed that equivalent performance can be obtained from smaller ensembles that use a
strength parameter slightly larger than 0.5. In these situations, with smaller ensembles, we
suggested that a good strategy for locating γ∗ is to start with γ = 0.5 and search upwards.
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The variability in the results we have seen indicate a step-size of 0.05 should be sufficient
to locate the optimum.

It seems that the optimal value of γ is determined almost entirely by how many networks
are in the ensemble, and to a far lesser extent by how complex the individual networks
are. It was however observed in several situations that very complex networks capable of
solving the task themselves could not gain a lot from using NC, and the optimum γ was
quite unpredictable. The same situation, where the behaviour of γ became unpredictable,
occurred when large amounts of noise were added to the data. In summary, better relative
performance gains (in comparison to a simple ensemble) were observed when using larger
ensembles made up of simpler networks.

At the end of chapter 6 we presented the first known experiments comparing NC learning
to the two most popular ensemble methods, Boosting and Bagging. Experiments show that
NC is a competitive technique, significantly outperforming Boosting and Bagging on 2 out of
the 3 datasets we used. These experiments are intended to provide a proof-of-concept that
NC can perform competitively; it is not intended that this be a comprehensive empirical
comparison. There are a number of extensions which could be performed to make the
comparison more meaningful. One possibility is to allow the Boosted and Bagged networks
to train for more iterations; it is well known that Bagging benefits from overfitted individuals
in the ensemble.

7.1.2 About Diversity in General?

In chapter 2 we reviewed the existing theoretical and heuristic explanations of what error
“diversity” is, and how it affects the error of the overall ensemble. We described the two
most prominent theoretical results for regression ensembles: the Ambiguity Decomposition
and the bias-variance-covariance decomposition. We demonstrated what we believe to be
the first formal link between these two, showing how they relate to each other. This link
turned out to be crucial in our discoveries regarding Negative Correlation Learning.

As part of the literature review, we reviewed practical techniques that have been applied
to create well-performing ensembles exhibiting diversity. We suggested a possible way to
structure the field, based on how techniques choose to create error diversity—we noted that
this improves upon a previously suggested taxonomy [124] of neural network ensembles. As
a parallel to this taxonomy, we introduced the Ambiguity family of methods, all of which
exploit the Ambiguity decomposition of the ensemble error. This was the first time this
family of algorithms had been brought together, and as mentioned, our later work showed
that NC learning was also a member of this family—the first method to directly utilise
Ambiguity for weight updates in the networks.

Thesis Question 3

The third thesis question was ”Can we identify a good way to understand classifier ensemble
diversity, and can we explicitly control it?”. This is a difficult question, outstanding in the
field for over a decade now. We have not been able to answer this question in full, but we
believe the thesis observations have contributed toward an overall contiuing effort.

In chapter 2, we described the current state of the art in formalising the concept of
diversity for classification ensembles, showing a paradox in that though it is widely sought
after, it is still ill-defined. The type of diversity controlled by NC learning is very different
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from this one—strictly, NC currently works in a regression framework, function approx-
imation of real valued numbers. It can solve classification tasks because we formulate a
classification problem as a regression one, approximating the posterior probabilities. From
this viewpoint, “diversity” can be formally defined in terms of covariance between continu-
ous random variables; this has been studied extensively in the multiple regression literature
as multicollinearity [88]. Therefore we understand that NC is a method for decreasing
collinearity between the network outputs. The corresponding question that has plagued
ensemble researchers for the last decade is “what is classification error diversity?”. When
we approach the question from this chain of thought, a possible new route to answering it
is highlighted. Since diversity in the regression context is understood as the covariance por-
tion of the bias-variance-covariance decomposition (for quadratic loss functions, as shown
in chapter 3) then maybe we can understand classification diversity by forming a bias-
variance-covariance decomposition for zero-one loss functions. The possibilities for this will
be considered in next section.

7.2 Future work

Quantifying Classification Error Diversity

At the time of writing, James [58] is the most comprehensive work on bias-variance de-
compositions for zero-one loss1. This shows that two types of bias and variance exist. For
squared loss as we have discussed in this thesis, they are identical. For zero-one loss, and
general loss functions, the differences start to appear. James [58] defines general bias and
variance terms, which have the typical properties we discussed in section 2.1.3. He notes
that unlike squared loss, they cannot be derived from a single expression and be additive
terms. He shows the systematic effect and variance effect as parallels to these, that can
be additive and derived from one expression. These terms define the effect that bias and
variance have on the predictor’s error. A fundamental part of James’ decomposition is to
use the mode operator instead of the conventional statistical expectation operator, E{·}.
When combining classifiers we can use the same operator, the plurality vote, which means
picking the most common class predicted by the ensemble members. On two class prob-
lems, this is equivalent to majority vote. It seems that an extension of these effect terms
into something akin to the bias-variance-covariance decomposition may prove interesting
for research in majority voting ensembles.

Further Analysis of Overfitting Behaviour

A very desirable addition to the work in chapter 6 is a detailed analysis of the overfitting
behaviour of NC. We showed that NC transforms the ensemble into a single large predictor
at particular values of the strength parameters. With such a large predictor, we may expect
it to overfit to noisy data. We hypothesized that the choice of γ strength parameter allows
us to choose the optimal point in between an ensemble and a large estimator, allowing us
to control the optimal degree of fit for our data. Our investigations however were mostly
conducted with a fixed number of iterations for training; we have no definite evidence that
overfitting has not occurred. Since a larger γ value serves to bring the ensemble closer

1In fact this work applies to any symmetric loss function.
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to being a single estimator, we might expect the ensemble has overfitted at these larger
values of γ. If we control the overfitting with early stopping [111], we may be able to
improve performance further. Early stopping is by no means a straightforward procedure;
Prechelt [111] analyses 14 methods of stopping criterion, from 3 distinct classes. For a
proper analysis of NC we would need to take this into account.

NC, Mixture of Experts, and Dyn-Co

In section 2.3.3 we described the Dyn-Co algorithm [48], which claimed to be able to blend
smoothly between a Mixture of Experts system and a pure ensemble system. We noted
that with a simple ensemble, we would expect the error gradient of the ith member to be
(fi − d), whereas with Dyn-Co configured as a supposedly ‘pure’ ensemble method, the
gradient is in fact 1

M (f̄ − d). However, seen in relation to NC and our findings about the
gradient components in chapter 5, this opens up a new interesting point. If we are learning
with NC, when λ = 1 or equivalently when γ = M

2(M−1) , the gradient for the ith ensemble

member is (f̄ − d). This is directly proportional to Dyn-Co’s gradient, and we could easily
add a scaling term to make them equivalent.

NC
(f - d) (f - d)

_
i

1
(f - d)

M
_

Mixture of Experts
System

_

Dyn-co

Figure 7.1: Relationships between error gradients in NC, Mixture of Experts, and Dyn-Co

Regard figure 7.1; we showed in chapter 5 that NC is able to blend smoothly from a
simple ensemble, with gradient (fi − d), to a single large predictor with gradient (f̄ − d).
Dyn-Co can blend smoothly from a system with gradient 1

M (f̄ −d) to a Mixture of Experts
system. Does this mean there exists a smooth three-dimensional space between these three
algorithms, as we depict above? The similarities between the gradient components here
cannot be coincidental; it would therefore be interesting to further investigate the links
between all three methods.

Definition of a Tighter Upper Bound

We defined a conservative upper bound on the strength parameters by considering the
state of the Hessian matrix. We showed that if the upper bound is exceeded, some of the
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leading diagonal elements will become negative, and therefore the entire Hessian matrix is
non-positive definite. However, it is possible that the matrix could become non-positive
definite before our upper bound is reached. An interesting extension to this work would be
to investigate whether it is possible to define a tighter bound. We formulate this question
as: “Are there any general conditions for the off-diagonal elements of the Hessian, that will
force non-positive definiteness, in spite of all leading diagonal elements being positive?”.
Some standard results from linear algebra [147] that may prove fruitful are as follows. A
matrix H that is positive definite exhibits, among others, the following properties:

1. Hii + Hjj > 2Hij for all i 6= j

2. The element with the largest modulus lies on the leading diagonal.

If we were to take these entries in the Hessian matrix, involving λ or γ, we may be
able to define a similar inequality as that which allowed us to derive our current bound.
However, these expressions are almost certainly input-dependent, so we may not be able to
derive a bound that is constant for all ensemble architectures as we currently have.

Other Regularisation Methods for Enforcing Diversity

NC has shown it is possible to enforce diversity with a regularisation term in the error
function. It would be desirable to have a large empirical investigation, over several datasets,
of different regularization terms for enforcing diversity. As part of his investigations, Liu [85]
empirically studied another possible penalty function for NC, in addition to the one that
we have concentrated on in this thesis. This was:

pi = (fi − 0.5)
∑

j 6=i

(fj − 0.5) (7.1)

which was found to be suitable for classification problems [154]. In addition, McKay and
Abbas [94] have used:

pi =

√
√
√
√ 1

M

M∑

i=1

(fi − d)4, (7.2)

The theoretical findings in this thesis do not apply to such penalties, and they therefore
remain an area in need of investigation.

So far we have only considered differentiable functions, that would be suitable for gra-
dient descent techniques. What about non-differentiable penalty terms? One possible
interesting algorithm might be to have an error function:

ei =
1

M

∑

i

L(fi, d) + γpi (7.3)

where L is the zero-one loss function. The penalty pi could be:

pi =
1

M

∑

i

L(fi, f̄) (7.4)

Since ei and pi are non-differentiable functions, the parameters of the estimator fi could
not be updated with gradient descent using this error function. Instead we could imagine
using an evolutionary algorithm like the one in chapter 4 to update the parameters.
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Links to Evolutionary Diversity

The term “diversity” is also often used in the evolutionary computation literature, in the
context of maintaining diversity in the population of individuals you are evolving [1, 29, 64].
This has a very different meaning to the concept of diversity as discussed in this thesis. In
evolutionary algorithms, we wish to maintain diversity in order to ensure we have explored
a large area of the search space and not focussed our search onto an unprofitable area.
When we decide our search has continued for long enough, we will typically take the best
performing individual found so far, ignoring the other individuals in the population. The
optimal diversity in this context will be that which optimises the explore-exploit trade off,
such that the best points in the search space are found quickly and efficiently. This is
in contrast to ensemble diversity methods, which create diversity with the intention that
the ‘population’ of ensemble members will be combined. As such, evolutionary diversity
methods do not concern themselves with creating a population that is complementary in
any way, but instead with just ensuring the maximum amount of the hypothesis space is
being explored in order to find the best individual.

In spite of these differences, some researchers have found interesting parallels [153]. A
technique which we believe to be relevant to this thesis is fitness sharing [28, 93]. This
forces differences among the individuals by adding penalty terms to their fitness functions;
a penalty is higher if the individual is similar to others in the population. This penalty is
somewhat of a heuristic, and its dynamics are still being understood [27]. We have studied
NC learning under an assumption that our search method is gradient descent, however it is
easy to imagine applying an evolutionary search algorithm like the one in chapter 4 to the
weights of the networks in our ensemble, using the NC error terms in the fitness function.
With the statistics framework we have provided for NC learning, further study may provide
leverage into a more formal basis for evolutionary techniques like Fitness Sharing.



Appendix A

Proof of the Ambiguity

Decomposition

In the original paper by Krogh & Vedelsby [70], the proof of the Ambiguity decomposition
was omitted for space considerations. We have presented an alternative proof in the thesis
body (see chapter 3). For completeness we now present the details of Krogh & Vedelsby’s
proof. Given that the ensemble output is a convex combination of the individual members:

fens =
∑

i

wifi (A.1)

we show that:
(fens − d)2 =

∑

i

wi(fi − d)2 −
∑

i

wi(fi − fens)
2 (A.2)

We must first make some definitions. The quadratic error of network i and of the
ensemble, respectively, are:

ei = (fi − d)2 (A.3)

eens = (fens − d)2 (A.4)

The ambiguity of a single member of the ensemble is defined as

vi = (fi − fens)
2 (A.5)

The ensemble ambiguity on input n is

vens =
∑

i

wivi =
∑

i

wi(fi − fens)
2 (A.6)

It is simply the variance of the weighted ensemble around the weighted mean, and
it measures the disagreement among the networks on input n. Now we will show that the
ensemble quadratic error eens can be expressed in terms of the individual network quadratic
errors ei and their ambiguity vens. Taking equation (A.6),

vens =
∑

i

wi [fi − fens]
2

=
∑

i

wi [fi − d + d− fens]
2

98



APPENDIX A. PROOF OF THE AMBIGUITY DECOMPOSITION 99

=
∑

i

wi [(fi − d)− (fens − d)]2

=
∑

i

wi

[
(fi − d)2 − 2(fi − d)(fens − d) + (fens − d)2

]

then incorporating (A.3) and (A.4) we have

vens =
∑

i

wi [ei − 2(fi − d)(fens − d) + eens]

=
∑

i

wiei −
∑

i

wi2(fi − d)(fens − d) +
∑

i

wieens

=
∑

i

wiei − 2(fens − d)
∑

i

wi(fi − d) + eens

=
∑

i

wiei − 2(fens − d)2 + eens

=
∑

i

wiei − 2eens + eens

=
∑

i

wiei − eens

then rearranging this, we have shown:

eens =
∑

i

wiei − vens

Re-expanding this gives us our original equation:

(fens − d)2 =
∑

i

wi(fi − d)2 −
∑

i

wi(fi − fens)
2 (A.7)

and we have proved the Ambiguity Decomposition.



Appendix B

The Relationship between

Ambiguity and Covariance

We now show the exact link between the Ambiguity decomposition and the bias-variance-
covariance decomposition. The bias-variance-covariance decomposition gives us:

E{(f̄ − d)2} = bias
2
+

1

M
var +

(

1− 1

M

)

covar (B.1)

Now using the Ambiguity decomposition, we have the result:

E{ 1

M

∑

i

(fi − d)2 − 1

M

∑

i

(fi − f̄)2} = bias
2
+

1

M
var +

(

1− 1

M

)

covar (B.2)

It would be interesting to understand what portions of the bias-variance-covariance de-
composition correspond to the ambiguity term. We place an α in front of the Ambiguity
term, then derive the relationship between the left and right sides of equation (B.2). Wher-
ever the α appears in the derivation will indicate how the Ambiguity term plays a role in
the bias-variance-covariance decomposition. We have:

eens = E
{ 1

M

∑

i

[
(fi − d)2 − α(fi − f̄)2

] }

=
1

M

∑

i

[

E
{

(fi − E{f̄}+ E{f̄} − d)2 − α(fi − E{f̄}+ E{f̄} − f̄)2
}]

now multiply out the brackets:

eens =
1

M

∑

i

[

E
{

(fi − E{f̄})2 + (E{f̄} − d)2 + 2(fi − E{f̄})(E{f̄} − d)

− α(fi − E{f̄})2 − α(E{f̄} − f̄)2 − 2α(fi − E{f̄})(E{f̄} − f̄)
}]

and evaluate the expectation and summation:

eens =
1

M

∑

i

E
{

(fi − E{f̄})2
}

+ (E{f̄} − d)2

− α
1

M

∑

i

E
{

(fi − E{f̄})2
}

− αE
{

(f̄ − E{f̄})2
}

− 2αE
{

(f̄ − E{f̄})(E{f̄} − f̄)
}
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and by rearranging the last term we obtain:

eens =
1

M

∑

i

E
{

(fi − E{f̄})2
}

+ (E{f̄} − d)2

− α
1

M

∑

i

E
{

(fi − E{f̄})2
}

+ αE
{

(f̄ − E{f̄})2
}

Obviously now if we remove the α term that we have been using, this would simplify to
give us the bias of f̄ , plus the variance of f̄ : which we could then break down further using
the bias-variance-covariance decomposition as we showed earlier. The interesting part here
though, is the term that would cancel out. The expected value of the Ambiguity term is
equal to whatever parts of this that contain the α term. Therefore:

E{ 1

M

∑

i

(fi − f̄)2} =
1

M

∑

i

E{(fi − E{f̄})2} − E{(f̄ − E{f̄})2}

= “interaction term”− var(f̄)

And the other side of the Ambiguity decomposition, the expected value of the average
individual error is whatever parts do not contain α :

E{ 1

M

∑

i

(fi − d)2} =
1

M

∑

i

E
{

(fi − E{f̄})2
}

+ (E{f̄} − d)2

= “interaction term” + bias(f̄)2

This “interaction term” is present in both sides, and cancels out to allow the normal
bias-variance decomposition of ensemble error. But what does it mean? If we examine it a
little further:

1

M

∑

i

E{(fi − E{f̄})2} =
1

M

∑

i

E{(fi − Ei{fi}+ Ei{fi} − E{f̄})2}

=
1

M

∑

i

Ei{(fi − Ei{fi})2}+
1

M

∑

i

(Ei{fi} − E{f̄})2

This is the average variance of the estimators, plus the average squared deviation of
the expectations of the individuals from the expectation of the ensemble. Both the average
individual error and the Ambiguity contain this interaction; when we subtract Ambiguity
from average individual error, as in equation (B.2), the interaction cancels out, and we
get the original bias-variance-covariance decomposition back. The fact that this term is
common to both parts shows clearly why we cannot maximise ensemble Ambiguity without
affecting the ensemble bias component as well.



Appendix C

Calculations Supporting the

Strength Parameter Bounds

We now present additional calculations supporting the work on the theoretical upper bounds
for the λ and γ parameters, as in chapter 5. All notational conventions and definitions follow
those used in that chapter.

Assuming a network with a linear output function, we wish to derive one of the entries
in the leading diagonal of the Hessian matrix. If one of these entries, ∂2ei

∂wi
2 , is zero or less,

then the Hessian is guaranteed to be non-positive definite, an undesirable prospect. For an
arbitrary weight wi in the output layer, connecting a hidden node hj to the output node fi,
we have:

∂ei

∂wi
=

∂ei

∂fi

∂fi

∂wi
(C.1)

∂2ei

∂wi
2

=
[ ∂

∂wi

∂ei

∂fi

] ∂fi

∂wi
+
[ ∂

∂wi

∂fi

∂wi

]∂ei

∂fi
(C.2)

(C.3)

Taking the first term on the right hand side:

∂ei

∂fi
= (fi − d)− λ(fi − f̄)

∂

∂wi

∂ei

∂fi
= hj − λ(hj −

1

M
hj)

=
(

1− λ(1− 1

M
)
)

hj (C.4)
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Now for the second term, remembering that we use linear output nodes, we have:

∂fi

∂wi
= hj (C.5)

∂

∂wi

∂fi

∂wi
=

∂2fi

∂wi
2

= 0 (C.6)

Therefore we simply have:

∂2ei

∂wi
2

=
[(

1− λ(1− 1

M
)
)

hj

]

hj +
[

0
]∂ei

∂fi
(C.7)

=
(

1− λ(1− 1

M
)
)

hj
2 (C.8)

It is interesting to observe that since we have:

∂ei

∂fi
= (fi − d)− λ(fi − f̄) (C.9)

∂2ei

∂fi
2 = 1− λ(1− 1

M
) (C.10)

then we can see:

∂2ei

∂wi
2

=
∂2ei

∂fi
2 h2

j (C.11)

Since h2
j is positive, this demonstrates that the sign of the leading diagonal entry ∂2ei

∂wi
2

in the Hessian is decided by the sign of ∂2ei

∂fi
2 .



Appendix D

Evolving λ : Empirical Data

This appendix presents the exact values of λ that were discovered as near optimal, during
experiments with the evolutionary algorithm described in chapter 4.

Ensemble configuration 2 hids 6 hids 12 hids

2 nets 0.7137 0.8676 0.8998

6 nets 0.9436 0.9467 0.9129

12 nets 0.9691 0.9766 0.9144

Figure D.1: Near Optimal λ values for Boston dataset

Ensemble configuration 2 hids 6 hids 12 hids

2 nets 0.9222 0.6778 0.7234

6 nets 0.9518 0.8831 0.8819

12 nets 0.9101 0.9059 0.8678

Figure D.2: Near Optimal λ values for Phoneme dataset
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Ensemble configuration 2 hids 6 hids 12 hids

2 nets 0.9198 0.6189 0.8374

6 nets 0.9599 0.8088 0.8511

12 nets 0.9208 0.9143 0.8998

Figure D.3: Near Optimal λ values for Phoneme dataset (fitness function used classification
error rate)
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